Author's Accepted Manuscript

Finite size effect on the magnetic excitations spectra, phonons and heat conduction of the quasi-one-dimensional spin chains system $SrCuO_2$

Dalila Bounoua, Romuald Saint-Martin, Sylvain Petit, Frédéric Bourdarot, Loreynne Pinsard-Gaudart

www.elsevier.com/locate/physb

PII: S0921-4526(17)30844-X

DOI: https://doi.org/10.1016/j.physb.2017.10.104

Reference: PHYSB310461

To appear in: Physica B: Physics of Condensed Matter

Received date: 30 June 2017 Revised date: 20 October 2017 Accepted date: 24 October 2017

Cite this article as: Dalila Bounoua, Romuald Saint-Martin, Sylvain Petit, Frédéric Bourdarot and Loreynne Pinsard-Gaudart, Finite size effect on the magnetic excitations spectra, phonons and heat conduction of the quasi- one-dimensional spin chains system SrCuO₂, *Physica B: Physics of Condensed Matter*, https://doi.org/10.1016/j.physb.2017.10.104

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Finite size effect on the magnetic excitations spectra, phonons and heat conduction of the

quasi- one-dimensional spin chains system SrCuO₂

Dalila BOUNOUA^{1*}, Romuald SAINT-MARTIN¹, Sylvain PETIT², Frédéric BOURDAROT³, Loreynne PINSARD-GAUDART¹

¹Equipe Synthèse Propriétés et Modélisation des Matériaux, Institut de Chimie Moléculaire et des Matériaux d'Orsay. Université

Paris-Sud, Université Paris-Saclay, 91405 Orsay, France

²Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, F-91191 Gif sur Yvette, FRANCE.

³Institut Nanosciences et Cryogénie (INAC)-Service de Physique Statistique Magnétisme et Supraconductivité (SPMS), CEA and

Université Joseph Fourier, F-38000 Grenoble, France

Abstract

We report inelastic neutron scattering measurements of the phonons modes, in the one-dimensional half integer spin chains cuprate

SrCuO₂. We study the longitudinal and the transverse modes propagating in the direction of the chains, along Q (0 0 L) and Q (2 0

L), respectively. On the other hand, we investigate the effect of substitution by impurities in the corresponding doped compounds,

namely, $SrCu_{0.99}M_{0.01}O_2$ with M=Mg or Zn, and $La_{0.01}Sr_{0.99}CuO_2$. Our results evidence a systematic strong spinon-phonon

interaction leading to an important decrease of the phonon scattered intensity as well as a decrease of the group velocity of the

transverse acoustic modes upon substitution, and a shift of the transverse optical B_{3u} mode in the La-doped SrCuO₂, in terms of

energy.

INTRODUCTION I.

Additionally to classical heat transport by electrons and phonons, magnetic heat transport by spin quasi-particles (spinons and

magnons) has been evidenced in series of compounds [1-9]. Among them, Mott insulating spin chains/ladders cuprates are of

particular interest, as they allow the investigation of lattice and spin dynamics contribution to the thermal conduction, free from any

electronic contribution.

The anisotropic magnetic heat transport in these compounds occurs along the spin chains/ladders direction. It involves magnetic

quasi-particles excitations, namely, magnon, for the case of the ladder compounds, for instance, Sr₁₄Cu₂₄O₄₁ [3]; and spinon, in the

case of the simple and double chains compounds, Sr₂CuO₃ and SrCuO₂ [5,6,10]. Heat transport by spinon and phonons gives rise to

a variety of scattering channels including spinon-phonon and two-phonon scattering that are highly relevant to the subsequent

thermal properties. The intentional insertion of controlled amounts of dopants (defects) allows for further probing defect-quasi

particle scattering paths.

Here, we focus our interest on the spin chains material SrCuO₂. The crystal structure of SrCuO₂ consists in alternating stacks of

ribbons of zigzag Cu-O chains, along (H 0 0) and (0 K 0), separated by Sr atoms along (0 K 0). The compound crystallizes in the

orthorhombic space group Cmcm, and all of the atoms occupy equivalent 4c Wyckoff sites. Within this structure, two types of

oxygen atoms can be found. The first one is linked to Cu^{2+} within the chains, which we will note as O_{Cu} ; the second one is linked to

 Sr^{2+} , and will be denoted O_{Sr} . A more extensive description of the structure can be found in [11,12].

1

Download English Version:

https://daneshyari.com/en/article/8161246

Download Persian Version:

https://daneshyari.com/article/8161246

<u>Daneshyari.com</u>