Accepted Manuscript

Effect of Zn/Sn molar ratio on the microstructural and optical properties of $Cu_2Zn_{1-x}Sn_xS_4$ thin films prepared by spray pyrolysis technique

S. Thiruvenkadam, S. Prabhakaran, Sujay Chakravarty, V. Ganesan, Vasant Sathe, M.C. Santhosh Kumar, A. Leo Rajesh

PII: S0921-4526(17)31060-8

DOI: 10.1016/j.physb.2017.12.065

Reference: PHYSB 310642

To appear in: Physica B: Physics of Condensed Matter

Received Date: 8 November 2017
Revised Date: 26 December 2017
Accepted Date: 27 December 2017

Please cite this article as: S. Thiruvenkadam, S. Prabhakaran, S. Chakravarty, V. Ganesan, V. Sathe, M.C.S. Kumar, A.L. Rajesh, Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu₂Zn_{1-x}Sn_xS₄ thin films prepared by spray pyrolysis technique, *Physica B: Physics of Condensed Matter* (2018), doi: 10.1016/j.physb.2017.12.065.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of Zn/Sn molar ratio on the microstructural and optical properties of $Cu_2Zn_{1-x}Sn_xS_4$ thin films prepared by spray pyrolysis technique

S. Thiruvenkadam^a*, S. Prabhakaran^b, Sujay Chakravarty^c, V. Ganesan^d, Vasant Sathe^d,

M.C. Santhosh Kumar^e, A. Leo Rajesh^f

*a Deparment of physics, Veltech Hightech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Tamil Nadu 600 062, India.

b centre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632 014, India

c UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu 603 104, India.

d UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017, India.

e Department of Physics, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620 015, India.

f Department of Physics, St. Joseph's College, Tiruchirappalli, Tamil Nadu 620 002, India.

*Corresponding author; Tel. +91 9894801047; E-mail: stmthiru@gmail.com;

Abstract

Quaternary kesterite Cu_2ZnSnS_4 (CZTS) compound is one of the most promising semiconductor materials consisting of abundant and eco-friendly elements for absorption layer in thin film solar cells. The effect of Zn/Sn ratio on $Cu_2Zn_{1-x}Sn_xS_4$ ($0 \le x \le 1$) thin films were studied by deposited by varying molar volumes in the precursor solution of zinc and tin was carried out in proportion of (1-x) and x respectively onto soda lime glass substrates kept at 573 K by using chemical spray pyrolysis technique. The GIXRD pattern revealed that the films having composites of Cu_2ZnSnS_4 , Cu_2SnS_3 , Sn_2S_3 , CuS and ZnS phases. The crystallinity and grain size were found to increase by increasing the x value and the preferential orientation along (103), (112), (108) and (111) direction corresponding to CZTS, $Cu2SnS_3$, CuS, and ZnS phases respectively. Micro-Raman spectra exposed a prominent peak at 332 cm⁻¹ corresponding to the CZTS phase. Atomic force microscopy was employed to study the grain size and roughness of the deposited thin films. The optical band gap was found to lie between 1.45 and 2.25 eV and average optical absorption coefficient was found

Download English Version:

https://daneshyari.com/en/article/8161311

Download Persian Version:

https://daneshyari.com/article/8161311

<u>Daneshyari.com</u>