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A B S T R A C T

We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact
solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk
approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial
role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole
approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic
one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in
the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods
in the 2D case, being by far less computational-resource demanding.

1. Introduction

Strongly correlated systems remain one of the most stimulating
intellectual challenges in modern condensed matter theory [1–10] and
solid state physics [11–14]. In this short paper we show the capabilities
of the operatorial approach, based on the equations of motion and the
Green's function formalisms [15–22] to very efficiently handle a
generic strongly correlated electron system reaching a deep and rich
understanding of its unconventional properties. We characterize the
exact solution of a generic interacting fermionic Hamiltonian and
discuss how such an analysis effectively performed on the smallest
cluster where all Hamiltonian terms result active (the minimal model)
can suggest very efficient and controlled approximation schemes for
the corresponding bulk system, which remains the final target of the
analysis.

Then, we use the 2D Hubbard model as case study, and, according
to the general recipe, we study the exact solution of its two-site version
(the corresponding minimal model) to capture the necessary ingredi-
ents to devise a novel and efficient three-pole (3p) bulk approximation.
As the spin fluctuations prove to play a crucial role, we enrich the
standard two-pole (2p) operatorial basis, formed by the two Hubbard
operators [18,21,22,24–26], with a third operator describing the
electronic one dressed by the nearest-neighbor spin fluctuations. This
3p approximation is in very good agreement with the exact solution
obtained in the two-site case (the minimal model) and performs very
well with respect to advanced (semi-)numerical methods [27] in the 2D
case (the target model), being by far less computational-resource
demanding and, in principle, more accurate in frequency and momen-

tum resolution. Moreover, this route, by treating spin fluctuations with
extreme care and by improving the momentum selectivity of the
spectral properties, opens up the possibility to directly address photo-
emission results of strongly correlated materials on a level before
possible only including explicitly a residual self-energy in the calcula-
tions [28].

2. The operatorial approach

We consider a system of electrons described by a Hamiltonian H in
terms of canonical fermionic operators c r( )λ , in the Heisenberg picture
r tr[ = ( , ), being r the position and t the time], where the index λ
identifies the quantum state. We aim to evaluate the generic observable
A A c r= [{ ( )}]λ where … denotes the quantum-statistical average in
the grand-canonical ensemble and A c r[{ ( )}]λ stands for a generic
operator, which can be always expressed in terms of a string of c-
operators without any loss of generality. If we split this string into two
sub-strings, we can consider any observable as the correlation function
C of two composite operators (COs) ψ and φ, which are expressed in
terms of the two sub-strings of c-operators identified by the splitting:
A C ψϕ= = 〈 〉† . Once all the relevant COs have been individuated
according to all the A − and the corresponding C − actively under
analysis, we consider the retarded Green's function (GF) of such COs
(in matricial notation): G t t Ψ t Ψ t( − ′) = [ ( ) ( ′)]† , where Ψ is a vector
hosting all relevant COs and is dubbed operatorial basis. In order to
compute G t t( − ′), we need to solve the corresponding Dyson equation,
which is generated by time-differentiation. Accordingly, we need the
equations of motion of all relevant COs and, therefore, of Ψ . In
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principle, by adding inΨ all COs appearing in turn in the current J (the
vector of COs obtained by time-differentiation, that is by the commu-
tation with H, of Ψ ) of the components of Ψ , one can close the
hierarchy of equations of motion and obtain an exact expression for G:

J i
t
Ψ Ψ H εΨ= ∂

∂
= [ , ] =

(1)

i
t
G t iδ t I εG t G ω

ω ε
I∂

∂
( ) = ( ) + ( ) ⇒ ( ) = 1

− (2)

ε is dubbed the energy matrix, whose elements are expressed only in
terms of the Hamiltonian parameters, and I Ψ Ψ= { , }† is dubbed the
normalization matrix, whose elements are correlation functions. Such
correlations functions can be either correlation functions of elements of
Ψ , and can therefore be computed self-consistently, or they become
unknowns of the theory. There are two possible routes to compute
exactly such unknowns: (a) to include in Ψ all COs necessary to
compute them self-consistently and all COs appearing in the related
currents, and repeat this procedure (re-computing I) as many times as
it would be necessary; (b) to use the constraints coming from the non-
canonical algebra closed by the COs inΨ [Algebra Constraints (ACs)] or
from the symmetries enjoyed by the system (e.g. Ward-Takahashi
identities) to compute the unknowns again self-consistently. The
second route leads to an operatorial basis Ψ with a minor number of
components and it is therefore preferable in terms of simplicity of the
calculations, although the first route usually leads to a more profound
understanding of the system under analysis.

There is a special operatorial basisΨ , the essential basis, that is the
one containing all c r( )λ or COs that can give all of them in sum, together
with all COs necessary to compute the elements of the related I self-
consistently through one of the two routes reported above. Computing
the Green's function G of the essential basis corresponds to find the
exact solution of the system as one knows all possible electronic
Green's functions of the system. In such a case, the eigenvalues of
the energy matrix ε are the fundamental excitations of the system and
the COs, identified by its eigenvalues, the new quasi-particles appear-
ing in the system because of the interactions present in the
Hamiltonian H. This is the best result one can get as (i) it is expressed
in terms of transition energies and COs identifying the relevant
electronic transitions in the system, that is the new non-interacting
quasi-particles, which is the way we naturally thinks about an inter-
acting system; (ii) the information contained in the solution can be
easily scaled between different cluster sizes and spatial dimensions.
Moreover, starting from COs representing the physical degrees of
freedom of the system (charge, spin, pair, … fluctuations dressing the
electronic transitions), one can also investigate the relevance each of
them has with respect to the physics of the system under analysis. As a
matter of fact, the diagonal entries of the normalization matrix I give a
measure of the weight of any CO (it is just 1 for any c r( )λ ) as a function
of the Hamiltonian and the external parameters (temperature, pres-
sure, …), while its off-diagonal entries give a measure of the degree of
orthogonality (it is just 0 for any couple of distinct c r( )λ ), that is of
independence, between two distinct COs.

Obviously, such recipe can be used just as it has been given above
only if the system under analysis has only a small number of degrees of
freedom or if just few (or none) of them interact. In these cases, the
number of COs in the essential basis is small enough to find the exact
solution of the system (e.g., a non-interacting system will just have all
and only the c r( )λ inΨ ). In all other cases, some approximations have to
be employed. Fundamentally, one can decide to include only a certain
number of selected COs in the essential basis Ψ according to his own
physical intuition (see below) and project the current of this Ψ on Ψ
itself

J i
t
Ψ εΨ δJ= ∂

∂
= +

(3)

ε J Ψ I= { , }† −1 (4)

Then, one has the choice either to neglect the residual current δJ
(leading to a pole approximation) or to compute according to any of the
available approximations in the literature (e.g., NCA, IPT, …) [9] the
related residual self-energy Σ t t δJ t δJ t( − ′) = [ ( ) ( ′)]† leading to a full-
fledge expression for G [28]: G I=

ω ε Σ
1

− − . Once this has been done,
one is left with the computation of the correlation functions appearing
now both in ε and I. The first route (a) is obviously not available (i.e.
the number of COs in Ψ has been fixed) and one can only use the
second one (b) (e.g. exploiting the ACs dictated by the choice ofΨ ) and
compute the remaining correlation functions, if any __ ACs can be just
enough [21] or even exceed the needs __ by means of any of the
available approximations in the literature and, in particular, the
operatorial projection [23]: Φ Φ Ψ I Ψ≅ { , }† −1 . This latter procedure
has to be preferred to any other as it is actually what has already been
used to approximate the current J in Eqs. (3) and (4): J has been split
into its projection on the basis Ψ (εΨ ) and into the residual current δJ ,
this latter describing a physics that is orthogonal to the one described
by the carefully chosen basisΨ . Any unknown correlation function can
always be computed, although in an approximate way, by splitting its
averaged string of c r( )λ into two COs (this makes the procedure not
unique and the physical intuition again plays a major role in this
choice), one of which belonging toΨ __ this is always possible as all c r( )λ
should anyway belong to Ψ __ and projecting the other CO over the
basis Ψ [23].

Let us come finally to the choice of the COs to employ in the
approximate essential basis Ψ . Among the many possible recipes [29]
(e.g., the essential basis of the Hamiltonian reduced just to the relevant
interaction term, the first operators appearing in the equations of
motion hierarchy of the canonical electronic operators of the sys-
tem, …), the exact essential basis for the smallest cluster where all
Hamiltonian terms result active (the minimal model) seems to be the
best choice as it assures that all relevant energy scales in the system are
taken into account together with all quasi-particles generated by the
interactions. Moreover, such a choice allows to re-use the exact results
obtained on such minimal cluster to devise very efficient and controlled
bulk approximations, which is the main aim of the whole described
procedure and of the operatorial approach overall. This benefit does
not only counterbalance, but greatly overcomes the greater efforts
necessary to get the exact solution on small clusters in the operatorial
approach with respect to ordinary exact diagonalization, whose results
cannot be re-used at all on larger and larger clusters, and definitely not
for the bulk.

3. Case study: the two-dimensional Hubbard model

As relevant case study for the application of the operatorial
approach, we study the paramagnetic solution of the single-band
Hubbard model on the square lattice described by the Hamiltonian

∑H tc i c i Un i n i n i= (−4 ( )· ( ) + ( ) ( ) − μ ( ))α

i

†
↑ ↓

(5)

where c i( ) is the Heisenberg electronic field operator in spinorial
notation, n i c i c i( ) = ( ) ( )σ σ σ

† and n i n i( ) = ∑ ( )σ σ are the number per spin
and total number operator, respectively, · is the internal product in spin

space, and c i α c tj( ) = ∑ ( , )α
j ij where α δ= 1

4ij ij is the nearest neighbor

ij( ) projector. t is the nearest-neighbor hopping integral, U the local
Coulomb repulsion, and μ the chemical potential. Hereafter, all
energies are expressed in units of t.

3.1. Two-site exact solution

For the two-site Hubbard model all possible correlation functions
can be computed and all COs equation of motion hierarchies can be
closed by means of the following exact essential basis Ψ :
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