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A B S T R A C T

Low-temperature magnetization curves and thermodynamics of a spin-1/2 Heisenberg octahedral chain with
the intra-plaquette and monomer-plaquette interactions are examined within a two-component lattice-gas
model of hard-core monomers, which takes into account all low-lying energy modes in a highly frustrated
parameter space involving the monomer-tetramer, localized many-magnon and fully polarized ground states. It
is shown that the developed lattice-gas model satisfactorily describes all pronounced features of the low-
temperature magnetization process and the magneto-thermodynamics such as abrupt changes of the isothermal
magnetization curves, a double-peak structure of the specific heat or a giant magnetocaloric effect.

1. Introduction

One-dimensional quantum Heisenberg spin chains display at low
enough temperatures remarkable magnetization curves, which may
even basically depend at low magnetic fields on the spin magnitude
according to the conjecture made by Haldane [1,2]. Among the most
notable features of zero-temperature magnetization curves one could
mention fractional magnetization plateaus, quantum spin liquids and
macroscopic magnetization jumps, which can be found first of all in
frustrated quantum Heisenberg spin models [3,4]. The macroscopic
magnetization jumps emergent at a saturation field are closely con-
nected with flat-band physics [5–8] and they can be alternatively
viewed as a condensation of localized magnons [3,8–12]. It should be
stressed that the localized-magnon picture of the frustrated quantum
Heisenberg spin models is of particular importance, because it
additionally allows a proper description of low-temperature thermo-
dynamics with the help of simpler classical lattice-gas models project-
ing out excited states with much higher energy. However, the main
drawback of the localized-magnon approach lies in that its validity is
usually restricted only to high magnetic fields [3,8–12].

Recently, the localized-magnon approach has been adapted in order

to find an exact ground state close to but slightly below saturation field
of a spin-1

2
Heisenberg octahedral chain, which involves the localized

one-magnon state at each elementary square cell (see Fig. 1 for a
schematic illustration) [13]. It is worthwhile to remark, moreover, that
the spin-1

2
Heisenberg octahedral chain exhibits at sufficiently low

magnetic fields another exact ground state with the character of the
monomer-tetramer phase, which appears due to formation of a singlet
state between four spins creating an elementary square plaquette [14].
This singlet-tetramer state can be alternatively considered as the
localized two-magnon state, which consequently gives us hope for a
proper description of low-temperature thermodynamics of the spin-1

2
Heisenberg octahedral chain in a full range of the magnetic fields [13].
In the following, we will develop a novel kind of the localized-magnon
approach for the spin-1

2
Heisenberg octahedral chain, which indeed

provides a consistent description of the low-temperature thermody-
namics in a full range of the magnetic fields.

2. Spin-1
2
Heisenberg octahedral chain

Let us consider the spin-1
2
Heisenberg octahedral chain schemati-

cally depicted in Fig. 1(a) and defined through the Hamiltonian
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where S S S S≡ ( , , )i j i j
x

i j
y

i j
z

, , , , stands for a spin-1
2
operator at a lattice site

given by two subscripts, the former subscript determines a position
within the unit cell and the latter subscript the unit cell itself. The
parameter J1 denotes the Heisenberg coupling between nearest-neigh-
bour spins from the monomeric and square-plaquette sites, the
parameter J2 labels the Heisenberg coupling between nearest-neigh-
bour spins from the same square plaquette and the Zeeman term h ≥ 0
refers to a magnetostatic energy of relevant magnetic moments in a
magnetic field. The translational invariance is achieved by the choice of
a periodic boundary condition S S≡N1, +1 1,1.

It has been shown in our preceding work that the spin-1
2
Heisenberg

octahedral chain given by the Hamiltonian (1) can be solved by several
complementary analytical and numerical approaches [13], whereas a
few unconventional quantum ground states can be corroborated even
by exact means. In a low-field part h J J≤ +1 2 of the highly frustrated
parameter space J J≥ 22 1 one may for instance employ the variational
approach in order to find an exact monomer-tetramer ground state

On the other hand, the localized-magnon approach [8–12] can be
adapted in order to afford an exact evidence of the localized many-
magnon ground state

which appears in the highly frustrated region J J≥ 22 1 at moderate
values of the magnetic field J J h J J+ ≤ ≤ + 21 2 1 2. Of course, the
classical ferromagnetic state

∏FM = ↑ ↑ ↑ ↑ ↑
j

N

j j j j j
=1

1, 2, 3, 4, 5,
(4)

becomes an exact ground state for the magnetic fields higher than the
saturation value h J J= + 2s 1 2. The primary goal of the present work is to
develop in the highly-frustrated region J J≥ 22 1 an effective lattice-gas
model, which will comprehensively describe the low-temperature
magnetization process and thermodynamics.

3. Lattice-gas model of hard-core monomers

The many-magnon ground state (3) emergent below the saturation
field involves except fully polarized monomeric spins a single localized
magnon trapped at each elementary square plaquette as given by the
eigenvector

1 = 1
2

( ↓ ↑ ↑ ↑ − ↑ ↓ ↑ ↑ + ↑ ↑ ↓ ↑

− ↑ ↑ ↑ ↓ ).

j j j j j j j j j j j j j

j j j j

2, 3, 4, 5, 2, 3, 4, 5, 2, 3, 4, 5,

2, 3, 4, 5, (5)

Contrary to this, the monomer-tetramer ground state (2) is constituted
by a singlet-tetramer state of the four spins forming an elementary
square plaquette, which can be alternatively viewed as the localized
two-magnon state given by the eigenvector

2 = 1
3

( ↑ ↓ ↑ ↓ + ↓ ↑ ↓ ↑ )

− 1
12

( ↑ ↑ ↓ ↓ + ↑ ↓ ↓ ↑ + ↓ ↑ ↑ ↓

+ ↓ ↓ ↑ ↑ ).

j j j j j j j j j

j j j j j j j j j j j j

j j j j

2, 3, 4, 5, 2, 3, 4, 5,

2, 3, 4, 5, 2, 3, 4, 5, 2, 3, 4, 5,

2, 3, 4, 5,

(6)

It is noteworthy that the monomeric spins S j1, are effectively decoupled
from the four spins forming the singlet-tetramer state (6). To summarize,
the four spins forming a square plaquette display in the highly frustrated
region J J≥ 22 1 either the localized one-magnon state (5) or the localized
two-magnon state (6) or are fully polarized within all available lowest-
energy eigenstates of the spin-1

2
Heisenberg octahedral chain, while the

monomeric spins are always fully polarized except that they are surrounded
by two square plaquettes in the singlet-tetramer state (6) due to the
effective decoupling of the monomer-plaquette interaction J1.

Bearing this in mind, the low-temperature magnetization process
and thermodynamics of the spin-1

2
Heisenberg octahedral chain can be

reformulated as a two-component lattice-gas model of hard-core
monomers (see Fig. 1(b) for a schematic illustration), since each square
plaquette can host either one localized one-magnon state (5) repre-

sented by the first kind of hard-core monomers with the chemical
potential μ J J h= + 2 −1 1 2 or one localized two-magnon state (6)
represented by the second kind of hard-core monomers with the
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Fig. 1. (a) A schematic representation of the spin-1
2
Heisenberg octahedral chain. Thick

(blue) lines represent the Heisenberg intra-plaquette coupling J2, while thin (red) lines

correspond to the monomer-plaquette coupling J1; (b) an equivalent two-component

lattice-gas model of hard-core monomers valid in a highly frustrated region J J≥ 22 1.

Green and violet balls denote hard-core monomers, which represent one-magnon and
two-magnon states of square plaquettes given by Eqs. (5) and (6). Unoccupied blue
squares denote fully polarized (zero-magnon) state of square plaquettes.
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