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A B S T R A C T

The objective of this work is to develop a code based on the finite difference time domain method in cylindrical
coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a
metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble
metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect
induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as
a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures
exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform
a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion
diagrams are given for different geometrical parameters.

1. Introduction

Today, the race to miniaturize optical components requires the
design of new and more complex structures requiring more elaborate
simulation and manufacturing tools. For this, modeling and simulation
tools in nano-photonics remain a challenging field of research. They
are needed to explain complex physical phenomena and to optimize
the geometrical and physical parameters of a given optical component
in addition to its experimental design often very expensive. One of the
useful methods in this field is the finite difference time domain (FDTD)
[1,2]. This method, generally developed in Cartesian coordinates and
based on the Yee scheme [2,3], can be implemented in cylindrical coor-
dinates to accurately describe structures having a curved geometry. The
modeling of these structures by classical Cartesian FDTD requires a very
fine spatial discretization leading to a huge computation time together
with a large memory space. In the case of revolution symmetrical struc-
tures, the azimuthal angle dependence of the electromagnetic field can
be developed analytically in Fourier series. This leads to the well-known
BOR-FDTD (Body Of Revolution-FDTD) algorithm where no discretiza-
tion along the azimuthal angle is required [1,4].

In this work we extend the BOR-FDTD code to the case of struc-
tures having a partial cylindrical symmetry. For this purpose, a CC-

* Corresponding author.
E-mail address: fbaida@univ-fcomte.fr (F.I. Baida).

FDTD (Cylindrical Coordinates-FDTD) algorithm [5–8] is developed for
dispersive materials where the azimuthal angle derivative appearing in
Maxwell’s equations is discretized through a centered finite difference
scheme as for the two other coordinates (radial and axial coordinates).
Compared to the BOR-FDTD algorithm, the CC-FDTD addresses the case
of any polarization state while one numerical simulation per azimuthal
mode number (m with a field dependence exp(im𝜙)) is required within
the BOR-FDTD. In addition, we incorporate the Drude critical points
model (DCP) [9–11] that allows a very good description of the disper-
sion properties of noble metals over a large spectral range in view of
modeling propagation inside metallic nano-waveguides.

An order-N FDTD code [4,12,13] is then derived in cylindrical coor-
dinates to study the propagation properties of infinitly-long waveg-
uides. The principle of the order-N algorithm is very simple and consists
on exciting the structure by an initial field that verifies Maxwell’s equa-
tions in addition to exhibit a broad spectrum covering all the possible
eigenfrequencies of the structure. Then the code processes the field vari-
ations versus time. After the transient regime, only the eigenmodes of
the structure remain and can be determined by calculating the spectral
energy density W (𝜆) = 1

2 (
⃖⃗E.⃖⃖⃗D + ⃖⃗B.⃖⃖⃗H). To validate our code, several tests

and convergence studies are achieved by comparing with other numer-
ical simulations (BOR and Cartesian FDTD). After that, we applied this
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Fig. 1. Positions of the electric and magnetic field components according to the cylindrical Yee scheme in a) 3D case and b) 2D case.

code to the modal study of a metallic CSWG for nano-optical applica-
tions.

2. Theoretical developments

The CC-FDTD method is based on the numerical resolution of
Maxwell’s equations expressed in cylindrical coordinates (system of Eq.
(1)) by following the adapted Yee scheme [1,3], shown on Fig. 1.

The CC-FDTD method is based on the numerical resolution of
Maxwell’s equations expressed in cylindrical coordinates:
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⃖⃖⃗D and ⃖⃗B are respectively the electric displacement and the mag-
netic fields. To determine the electromagnetic field ( ⃖⃗E, ⃖⃖⃗H) constitutive
relations are needed. In the case of linear, isotropic, homogeneous and
non-magnetic medium, these relations can be expressed as:

⃖⃖⃗D(𝜔) = 𝜀0𝜀r(𝜔) ⃖⃗E(𝜔) (2.a)

⃖⃗B(𝜔) = 𝜇0 ⃖⃖⃗H(𝜔) (2.b)

Where 𝜔 is the angular frequency of the electromagnetic field, 𝜀0 is
the dielectric permittivity of vacuum and 𝜀r(𝜔) is the dielectric function
of the considered medium. 𝜇0 is the magnetic permeability of vacuum
(𝜇0𝜀0c2 = 1, with c is the light celerity).

In the scope of the paper, we are only dealing with the determina-
tion of the eigenmode properties of an infinite waveguide along the Oz
direction.

⃖⃖⃗𝜓(r, 𝜙, z, t) = ⃖⃖⃖⃖⃗𝜓0(r, 𝜙, t) exp(ikzz) (3)

where ⃖⃖⃗𝜓 is any electromagnetic field ( ⃖⃗E, ⃖⃖⃗D, ⃖⃖⃗H, ⃖⃗B).
In this case, all the z−derivatives of Eq. (1) can be calculated analyt-

ically as a function of the wavevector component along the propagation
direction through 𝜕 ⃖⃗𝜓 (r,𝜙,z,t)

𝜕z = ikz ⃖⃖⃗𝜓(r, 𝜙, z, t) while r−, 𝜙−, and t− deriva-
tives are approximated by centered finite differences as in the classical

case of Cartesian coordinates. The r coordinate is discretized as iΔr, the
𝜙 one by jΔ𝜙 and time by nΔt with i, j, n are natural integers and Δr,
Δ𝜙 and Δt are the step size along each variable. By using the electric
constitutive relation Eq. (2.a) and applying the spatial and temporal
discretizations, the system of Eq. (1) leads to express the ⃖⃖⃗D components
as:
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The magnetic field components can be obtained similarly.
These equations remain valid for dispersive or non-dispersive dielec-

tric materials. In this last case, the electric field ⃖⃗E can be instantaneously
calculated by dividing the ⃖⃖⃗D field by 𝜀0𝜀r .

The stability condition of the CC-FDTD algorithm is given by the
Courant-Friedrich-Levy (CFL) criterion [6] as follows:
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where 𝛼 is a less-dimensional coefficient ∈ [0,1]. To avoid the numerical
dispersion, the discretization step along the radial direction must verify
this condition:

Δr ≤ 𝜆min
n

(6)

where 𝜆min is the minimum wavelength that propagates in the CC-FDTD
grid and n is in the range of 15 to 20.
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