

**ORIGINAL ARTICLE** 

Alexandria University

**Alexandria Engineering Journal** 

www.elsevier.com/locate/aej www.sciencedirect.com



# Heat transfer in inclined air rectangular cavities with two localized heat sources



Samy M. Elsherbiny\*, Osama I. Ismail

Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt

Received 3 May 2014; revised 26 March 2015; accepted 28 July 2015 Available online 14 September 2015

### **KEYWORDS**

Natural convection; Heat sources; Rectangular cavities; Numerical methods; Laminar convection **Abstract** The present work investigates numerically the effects of cavities' aspect ratio and tilt angle on laminar natural convection of air in inclined rectangular cavities with two localized heat sources. A mathematical model was constructed where the conservation equations governing the mass, momentum and thermal energy together with their boundary conditions were solved. The calculation grid is investigated to determine the best grid spacing, number of iterations, and other parameters which affect the accuracy of the solutions. The numerical method and computer program were tested for pure conduction and convection with full heating ( $\varepsilon = 1$ ) to assure validity and accuracy of the numerical method.

The investigation used rectangular enclosures with position ratios of the heaters,  $B_1 = 0.25$ ,  $B_2 = 0.75$ , size ratio,  $\varepsilon = 0.25$ , and covered Rayleigh numbers based on scale length, s/A ranging from  $10^3$  to  $10^6$ . The tilt angle from the horizontal was changed from  $\Phi = 0^\circ$  to  $180^\circ$ , and the aspect ratio was taken as A = 1, 5, and 10. The results are presented graphically in the form of streamlines and isotherm contour plots. The heat transfer characteristics, and average Nusselt numbers were also presented. A correlation for Nu is also given.

© 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

#### 1. Introduction

Natural convection in enclosures has been extensively studied in the past both analytically and experimentally. Chu et al. [1] reported an extensive survey on natural convection from a discrete heater in an enclosure. They examined the effect of heater location in the enclosure with A = 0.4-5, Pr = 0.72,  $\Phi = 90^{\circ}$ , and for a range of Rayleigh number, Ra<sub>H</sub> up to  $10^{5}$ . They found that the Nusselt number, Nu<sub>H</sub> was proportional to

\* Corresponding author.

Ra<sub>H</sub> for any location of the discrete heat source. Turner and Flack [2,3] have experimentally examined the heat transfer in geometry similar to that used by Chu et al. [1] for Grashof numbers, Gr<sub>H</sub> up to  $9 \times 10^6$ . They obtained the same form of correlation as Nu<sub>H</sub> =  $C1 \cdot \text{Gr}_{H}^{c2}$ , where C1 and C2 are functions of size ratio,  $\varepsilon$ . Yovanovich [4] reported an expression for the thermal constrictive resistance,  $r_c$  of a discrete heat source on a rectangular solid region with the heat sink on the opposite side and other sides are insulated. The expression is given as  $r_c = (1/\pi k) \ln [(1/\sin (\pi \varepsilon/2) \cos \pi (B-0.5)].$ 

Elsherbiny et al. [5] determined experimentally the effect of heater location using three heaters on the hot wall. They measured Nu for each heater and found that Nu for upper heater was decreased up to a certain Ra and then increased.

http://dx.doi.org/10.1016/j.aej.2015.07.013

1110-0168 © 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: samymelsherbiny@yahoo.com (S.M. Elsherbiny). Peer review under responsibility of Faculty of Engineering, Alexandria University.

#### Nomenclature

| A               | aspect ratio of enclosure, $A = H/L$                        | $T_{c}$    | temperature of cold surface, K                              |
|-----------------|-------------------------------------------------------------|------------|-------------------------------------------------------------|
| $b_1$           | distance from $x = 0$ to the center of the lower            | $T_h$      | temperature of discrete heat source, K                      |
|                 | heater, m                                                   | $\Delta T$ | temperature difference, $\Delta T = T_h - T_c$ , K          |
| $b_2$           | distance from $x = 0$ to the center of the upper            | и          | dimensional velocity component in x direction,              |
|                 | heater, m                                                   |            | m/s                                                         |
| $B_1$           | position ratio of the lower heater, $B_1 = b_1/H$           | U          | non-dimensional velocity component in X direc-              |
| $B_2$           | position ratio of the upper heater, $B_2 = b_2/H$           |            | tion, $U = u(s/A)/\alpha$                                   |
| $C_p$           | specific heat at constant pressure, J/(kg K)                | V          | dimensional velocity component in y direction, m/s          |
| g               | gravitational acceleration, m/s <sup>2</sup>                | V          | non-dimensional velocity component in Y direc-              |
| Gr              | Grashof number, Gr = $g\beta (T_h - T_c)\dot{s}(s/A)^3/v^2$ |            | tion, $V = v(s/A)/\alpha$                                   |
| Η               | width of enclosure, m                                       | X          | dimensional coordinate, m                                   |
| h               | average heat transfer coefficient, W/m <sup>2</sup> K       | X          | non-dimensional coordinate, $X = x/(s/A)$                   |
| $h_x$           | local heat transfer coefficient, W/m <sup>2</sup> K         | у          | dimensional coordinate, m                                   |
| k               | thermal conductivity, W/m K                                 | Y          | non-dimensional coordinate, $Y = y/(s/A)$                   |
| L               | height of enclosure, m                                      |            |                                                             |
| Nu              | average Nusselt number, $h(s/A)/k$                          | Greek s    | ymbols                                                      |
| Nu <sub>x</sub> | local Nusselt number, $h_x(s/A)/k$                          | α          | thermal diffusivity, $k/\rho C_p$ , m <sup>2</sup> /s       |
| $p_d$           | dynamic pressure, N/m <sup>2</sup>                          | β          | coefficient of volumetric thermal expansion, $K^{-1}$       |
| $P_d$           | non-dimensional dynamic pressure,                           | ρ          | local density, kg/m <sup>3</sup>                            |
|                 | $P_d = p_d (s/A)^2 / \rho \alpha^2$                         | $\rho_c$   | cold density, kg/m <sup>3</sup>                             |
| Pr              | Prandtl number, $Pr = \mu C_p/k$                            | μ          | dynamic viscosity, kg/m s                                   |
| r <sub>c</sub>  | constriction resistance, K/W                                | v          | kinematic viscosity, $v = \mu/\rho$ , m <sup>2</sup> /s     |
| Ra              | Rayleigh number based on $(s/A)$ ,                          | $\Phi$     | angular coordinate, rad                                     |
|                 | $\mathbf{Ra} = g\beta(T_h - T_c) \cdot (s/A)^3 / v\alpha$   | θ          | dimensionless temperature, $\Theta = (T - T_c)/(T_h - T_c)$ |
| S               | length of heat source, m                                    | 3          | size ratio, $s/H$                                           |
| Т               | local fluid temperature, K                                  |            |                                                             |
|                 |                                                             |            |                                                             |
|                 |                                                             |            |                                                             |

Markatos and Pericleous [6] have experimentally examined the heat transfer in a square enclosure (A = 1), full contact heated wall ( $\varepsilon = 1$ ), Pr = 0.71,  $\Phi = 90^{\circ}$ , B = 0.50, and the range of Ra from  $10^3$  to  $10^{12}$ . They obtained the velocity distribution and a correlation of Nusselt numbers as a function of  $\operatorname{Ra}_H$  as  $\operatorname{Nu}_H = C1$ .  $(\operatorname{Ra}_H)^{C2}$ , where C1 and C2 depend on  $Ra_{H}$ . Keyhani et al. [7] have experimentally studied the heat transfer in an enclosure filled with ethylene glycol. The hot wall consisted of 11 discrete isoflux heaters where A = 16.5, Pr = 150, and the local modified Rayleigh number was in the range of  $9.3 \times 10^{11}$  to  $1.9 \times 10^{12}$ . They correlated the local Nusselt number as  $Nu_x = 1.009 \text{ Ra}_x^{0.1805}$ , where "x" is the local height, measured from bottom of cavity to mid-height of the heated section. Chadwick et al. [8] have experimentally examined the heat transfer in a rectangular enclosure with an isoflux heating mode with A = 5, Pr = 0.71,  $\varepsilon = 0.133$ ,  $\Phi = 90^{\circ}$ , and Gr<sup>\*</sup> (Gr<sup>\*</sup> =  $g\beta s^4/kv^2$ ) ranged from  $10^4$  to  $5 \times 10^5$ . They obtained the value of average Nusselt number as a function of Gr\* based on heater length. The average Nusselt number was obtained as Nu = C1.  $(Gr^*)^{C2}$ , where C1 and C2 are functions of  $\varepsilon$ . Also, they obtained the value of local Nusselt number as a function of  $\operatorname{Gr}_{x}^{*}$  and the local modified Grashof number based on distance from leading edge of heater (Gr<sub>x</sub><sup>\*</sup> =  $g\beta x^4/kv^2$ ) and "x" is the distance from the leading edge of the heater to any point at heater surface. The local Nusselt number, Nu<sub>x</sub> was correlated as Nu<sub>x</sub> =  $C1\dot{s}(Gr_x^*)^{C2}$ , where C1 and C2 are functions of B.

Ho and Chang [9] studied numerically and experimentally the influence of aspect ratio on heat transfer in an enclosure which has 4 isoflux heaters where A changed from 1 to 10, Pr = 0.71,  $\Phi = 90^{\circ}$  and a range of  $Ra_{H}^{*}$  from  $10^{4}$  to  $10^{6}$ . They obtained the value of Nusselt number,  $Nu_{H}$  as  $Nu_{H} = C1$ s  $(Ra_{H}^{*})^{C2}$ .  $A^{C3}$ , where C1, C2 and C3 are constants depending on heater arrangement. Heindel et al. [10,11] have experimentally studied the heat transfer in a rectangular enclosure. The heat wall consisted of  $3 \times 3$  array of heaters where  $\Phi = 90^{\circ}$ , A ranged from 2.5 to 7.5, Pr ranged from 5 to 25, and  $Ra_{L}$  ranged from  $10^{5}$  to  $10^{8}$ . They obtained the value of Nu for each row of heaters as  $Nu = C\$Ra^{0.25}$  where C is a function of row arrangement.

Ahmed and Yovanovich [12] studied numerically the influence of discrete heat source location on natural convection heat transfer in a range of Ra<sup>\*</sup>, based on scale length, s/A from 0 to 10<sup>6</sup>, Pr = 0.72, A = 1, B = 0.5 and  $0 \le \varepsilon \le 1.0$ . They obtained analytical correlations for this problem for either isothermal heat source or isoflux heat source.

Al-Bahi et al. [13] studied numerically the effect of heater location on local and average heat transfer rates in an enclosure which has a single isoflux heater where A = 1, Pr = 0.71,  $\Phi = 90^{\circ}$ ,  $\varepsilon = 0.125$ ,  $Ra^*$  ranges from  $10^3$  to  $10^6$ and B = 0.25, 0.50 and 0.75. They obtained isotherms, streamlines and temperature distribution characteristics at high and low  $Ra^*$ . Al-Bahi et al. [14] studied numerically the effect of tilt angle from horizontal on local and average heat transfer rates in an enclosure which has a single isoflux heater where A = 5, Download English Version:

## https://daneshyari.com/en/article/816136

Download Persian Version:

https://daneshyari.com/article/816136

Daneshyari.com