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Abstract In this paper, the mathematical modeling of unsteady second grade fluid in a capillary

tube with sinusoidal pressure gradient is developed with non-homogenous boundary conditions.

Exact analytical solutions for the velocity profiles have been obtained in explicit forms. These solu-

tions are written as the sum of the steady and transient solutions for small and large times. For

growing times, the starting solution reduces to the well-known periodic solution that coincides with

the corresponding solution of a Newtonian fluid. Graphs representing the solutions are discussed.
� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Generally, many engineering fluids, e.g. dilute polymer, pastes,
slurries, synovial, paints exhibit numerous strange features,
e.g. shear loss/thickening and display of elastic effects which

cannot be well described by the Navier–Stokes equations. Var-
ious rheological models have been proposed to portray their
non-Newtonian flow behavior. The fluids of a differential type
have acquired special status due to their elegance, Dunn and

Rajagopal [1]. One such type of rheological model is the differ-
ential type fluid model and second grade fluid is one of the sub-
classes of these differential type fluid models. Due to its ability

in successfully capturing various non-Newtonian effects, it has

been the subject of many investigations [2–7], etc.
Recently, some of the newly developed approximate analyt-

ical tools have been employed by various researchers to solve
several basic flow problems of second grade fluid in cylindrical

geometry, and the approximate solutions were found for the
velocity profiles [8–11]. All these quoted analyses of the fluid
flow take place due to the drag of boundary in a bath of fluid.

However, no solution expressions were obtained for the flow
rate that is solely due to the oscillating pressure gradient.
The task of the present paper is to venture further in this

regime. For what we are interested to examine the unsteady
second grade fluid in a capillary round tube driving by a sinu-
soidal pressure gradient. Due to the complexity of the govern-
ing equations, finding accurate solutions is not easy. Therefore,

we made an attempt to obtain an exact solution to the differ-
ential equation. A solution for the velocity field is derived as
the sum of steady and transient solutions, describing the
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motion of the fluid for small and large times using exact anal-
ysis. This review would serve as an important reference for
researchers in this area.

2. Formulation of the problem

Consider an incompressible, laminar, viscoelastic fluid pulsat-

ing flow in a capillary tube with a radius of r0 driven by a pres-
sure gradient that varies sinusoidally with time as

rp ¼ ez B0 þ B1 exp ixtð Þð Þ: ð1Þ

where the pressure gradient contains a steady and a pulsating
part, of amplitudes B0 and B1, respectively. The unit vector ez
is in the z-direction parallel to the flow, x is the frequency of

the pressure gradient, t is the time and i ¼ ffiffiffiffiffiffiffi�1
p

is the imagi-

nary constant. Using the pressure gradient given in Eq. (1),
the cosine and sine oscillations can be treated by taking the
real and imaginary parts of the pressure gradient rp. Fig. 1
shows the physical configuration.

The Cauchy stress tensor T for an incompressible homoge-
neous second grade fluid is given by the constitutive equations

T ¼ �pIþ S; S ¼ lA1 þ a1A2 þ a2A
2
1; ð2Þ

where I is the identity tensor, p is the pressure, S is the extra-

stress tensor, l is the dynamic viscosity, and a1, a2 are normal
stress moduli and A1 and A2 are the kinematic tensors defined
as

A1 ¼ grad uð Þ þ grad uð ÞT; ð3Þ
A2 ¼ d

dt
A1 þ A1 grad uð Þ þ grad uð ÞTA1; ð4Þ

where d
dt
is the material time derivative and u is velocity vector.

The fluid velocity through capillary tube is moving with

velocity of the form

u ¼ u r; tð Þ ¼ u r; tð Þez; ð5Þ
where ez is the unit vector along z-axis.

Introducing Eq. (5) into Eq. (2), we find that

Tr;z ¼ lþ a1
@

@t

� �
@u r; tð Þ

@r
; ð6Þ

By considering the pressure gradient in the axial direction, the
balance of the linear momentum in the absence of body forces

leads to the following equation

q
@u

@t
¼ B0 þ B1 exp ixtð Þð Þ þ @

@r
þ 1

r

� �
Tr;z ð7Þ

Eliminating Tr;z between Eqs. (6) and (7), we obtain

q
@u

@t
¼ B0 þ B1 exp ixtð Þð Þ þ l

@2u

@r2
þ 1

r

@u

@r

� �
þ a1

� @

@t

@2u

@r2
þ 1

r

@u

@r

� �
; ð8Þ

The initial and boundary conditions are

u ¼ 0 at t ¼ 0; for 0 6 r 6 r0; ð9Þ
@u

@r
¼ 0 at r ¼ 0; for all t P 0; ð10Þ

u ¼ 0 at r ¼ r0; for all t P 0: ð11Þ
Consider the following dimensionless quantities

u� ¼ u

um
; a� ¼ a1

qr20
; t� ¼ lt

qr20
; r� ¼ r

r0
; x� ¼ xr20

t
: ð12Þ

we obtain the dimensionless initial-boundary values problem
(dropping � the notation)

@u

@t
¼ c B0 þ B1 exp ixtð Þð Þ þ @2u

@r2
þ 1

r

@u

@r

þ a
@

@t

@2u

@r2
þ 1

r

@u

@r

� �
ð13Þ

u ¼ 0 at t ¼ 0; for 0 6 r 6 1; ð14Þ
@u

@r
¼ 0 at r ¼ 0; for all t P 0; ð15Þ

u ¼ 0 at r ¼ 1; for all t P 0: ð16Þ

where c ¼ r2
0

lum
is a constant that controls the amplitude of the

pressure fluctuation and um ¼ r2
0

l
@bp
@z

� �
is the cross-sectional

mean velocity for the time-averaged flow.

3. Solution technique

3.1. Steady solution

Assume that the solution to Eq. (13) is of the form

u r; tð Þ ¼ us rð Þ þ ut r; tð Þ; ð17Þ
where us is a steady solution and ut is the transient solution
component. Note that, if we allow t ! 1, we obtain the

steady solution.
Substituting Eq. (17) into (13) we have

@us
@t

þ @ut
@t

¼ c B0 þ B1 exp ixtð Þð Þ

þ @2us
@r2

þ @2ut
@r2

þ 1

r

@us
@r

þ 1

r

@ut
@r

� �
þ a

@

@t

@2ut
@r2

þ 1

r

@ut
@r

� �
: ð18Þ

Considering @us
@t

¼ 0, Eq. (18) can be separated into two

equations

@2us
@r2

þ 1

r

@us
@r

¼ �cB0; ð19Þ
@2ut
@r2

þ 1

r

@ut
@r

þ a
@

@t

@2ut
@r2

þ 1

r

@ut
@r

� �
� @ut

@t
¼ �cB1 exp ixtð Þ; ð20Þ

Figure 1 The physical configuration.
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