
REVIEW

A Review on the development of lattice Boltzmann

computation of macro fluid flows and heat transfer

D. Arumuga Perumal a,*, Anoop K. Dass b

aDepartment of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
bDepartment of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India

Received 5 October 2013; revised 16 June 2015; accepted 23 July 2015
Available online 26 September 2015

KEYWORDS

Lattice Boltzmann method;

Single-relaxation-time;

Multi-relaxation-time;

Boundary condition;

Lattice kinetic scheme

Abstract The Lattice Boltzmann Method (LBM) is introduced in the Computational Fluid

Dynamics (CFD) field as a tool for research and development, but its ultimate importance lies in

various industrial and academic applications. Owing to its excellent numerical stability and consti-

tutive versatility it plays an essential role as a simulation tool for understanding micro and macro

fluid flows. The LBM received a tremendous impetus with their spectacular use in incompressible

and compressible fluid flow and heat transfer problems. The applications of LBM to incompressible

flows with simple and complex geometries are much less spectacular. From a computational point

of view, the present LBM is hyperbolic and can be solved locally, explicitly, and efficiently on par-

allel computers. The present paper reviews the philosophy and the formal concepts behind the lat-

tice Boltzmann approach and gives progress in the area of incompressible fluid flows, compressible

fluid flows and free surface flows.
� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an
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1. Introduction

1.1. General background

The continuous growth of computer power has motivated the
scientific community to use CFD for numerical solution of
the governing equations of fluid dynamics [1]. Generally the

mathematical models used in CFD include convective and dif-
fusive transport of some variables. These mathematical models
consist of governing equations in the form of ordinary or par-

tial differential equations (ODEs or PDEs). As a great number
of such model equations like the Navier–Stokes equations do
not possess analytical solutions, one has to resort to numerical

methods [2]. The difficulty in solving the Navier–Stokes equa-
tions is due to their nonlinear terms. In conventional numerical
methods, the macroscopic variables of interest such as velocity

and pressure are usually obtained by solving the Navier–Stokes
equations [3].

Over the years, the finite differencemethod (FDM) and finite
volume method (FVM) are frequently being used in CFD [4].

FDM consists in essentially setting up a uniform rectangular
grid in the problem domain, discretizing the governing
equations with respect to the grid by replacing the derivatives

with their finite-difference approximations and solving the
resulting algebraic equations numerically [5]. For non-uniform
grids FDM requires a transformation of the physical space onto

a computational space with an uniform grid. FVM requires no
such transformation as it solves the integral form of the
governing equations that are integrated over (generally)
irregularly-shaped finite volumes. The finite element method

(FEM) has not gained as much popularity in fluid mechanics
as it has in structural mechanics.

In the last two decades, a different kind of numerical

method for applications in CFD, namely, the Lattice Boltz-
mann Method (LBM) has gained popularity [6]. The LBM
has emerged as a new effective and alternative approach of

CFD and it has achieved considerable success in simulating
fluid flows and heat transfer problems [7]. In the LBM
approach, one solves the kinetic equation for the particle dis-

tribution function. The macroscopic variables such as velocity
and pressure are obtained by evaluating the hydrodynamic
moments of the particle distribution function [8]. One of the
most popular and simple approaches in the LBM is lattice

Boltzmann equation with linearized collision operator based
on the Bhatnagar–Gross–Krook (LBM-SRT) collision model.
It is known that, through a Chapman–Enskog analysis, one

can recover the governing continuity and momentum equa-

tions in the low Mach number limit [9].

1.2. Overview of LBM

In the past few years, researchers have been using lattice Boltz-
mann method for simulating and modelling in physical, chem-
ical, social systems including flows in magnetohydrodynamics

[10], immiscible fluids [11], multiphase flows [12], heat transfer
problems [13–15], porous media [16] and isotropic turbulence
[17]. Historically, LBM originated from the method of Lattice

gas automata (LGA), which was first introduced in 1973 by
Hardy, Pomeau and de Pazzis (HPP) [18]. In LGA, the term
Lattice implies that one is working on a lattice which is d-
dimensional and usually regular. Gas suggests that a gas is

moving on the lattice. The gas is usually represented by Boo-
lean particles (0 or 1). Automata indicate that the gas evolves
according to a set of rules. In the LGA model, the space, time

and particle velocities are all discrete. The iteration of an LGA
consists of a collision and propagation step. But, the major
drawbacks of the LGA were intrinsic noise, non-Galilean

invariance, an unphysical velocity dependent pressure and
large numerical viscosities. In 1986, Frisch, Hasslacher and
Pomeau (FHP) obtained the correct Navier–Stokes equations

using a hexagonal lattice. Lattice Boltzmann equations has
been used at the cradle of Lattice Gas Automata (LGA) by
Frisch et al. [19] to calculate viscosity. To eliminate statistical
noise, in 1988 McNamara and Zanetti [20] did away with the

Boolean operation of LGA involving the particle occupation
variables by neglecting particle correlations and introducing
averaged distribution functions giving rise to the LBM.

Higuera and Jimenez [21] brought about an important sim-
plification in LBMby presenting a Lattice Boltzmann Equation
(LBE) with a linearized collision operator that assumes that the

distribution is close to the local equilibrium state. A particu-
larly simple version of linearized collision operator based on
the Bhatnagar–Gross–Krook (BGK) [22] collision model was
independently introduced by several authors including Koel-

man [23] and Chen et al. [24]. The lattice BGK (LBGK) model
[25,26] utilizes the local equilibrium distribution function to
recover the macroscopic Navier–Stokes equations.

Boundary condition plays a crucial role in lattice Boltz-
mann simulations [27–34]. The bounce-back boundary condi-
tion is a popular boundary condition in LBM. It is derived

from LGA and has been extensively applied in LBM
simulations. In this scheme, the particle distribution function
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