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A B S T R A C T

The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral
magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of
the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For
helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and
comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations
shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the
amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the
homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation
radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization
appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to
disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of
the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase
transitions.

1. Introduction

The strongly correlated compound MnSi belongs to the structural
type B20 with the space group P213, for which the absence of an
inversion centre is typical [1,2]. Such symmetry feature causes the
appearance of the band gap in the electronic spectrum [3], and leads to
the appearance of the antisymmetric relativistic Dzyaloshinskii-Moriya
(DM) exchange [4,5]. In Ref. [4]. it was proposed that the Ginzburg-
Landau functional describes the competition of exchange, anisotropic,
and DM-interactions, which results in the formation of a long-period
helical ordering with a fixed direction of a spin superstructure wave
vector (ferromagnetic helicoid) observed in neutron diffraction studies
[5]. Analysis of the Bak-Jensen model [4] basing on the renormaliza-
tion group showed the possibility of formation a helicoidal ferromag-
netic phase with a wave vector, the magnitude of which is proportional
to a DM parameter and inversely proportional to an inhomogeneous
part of the exchange interaction. The ferromagnetic helicoidal state
within the framework of the Bak-Jensen model was obtained also using
the Fermi-liquid approach [6] and it was shown that in the absence of
the DM-interaction, the model describes a weak ferromagnetic state.

The ferromagnetic ground state for the crystal structure of MnSi

was considered in the framework of the ab initio calculations [3]. A
number of solutions were obtained, which differ by the values of the
Hubbard's interaction parameters, form of the density of states, and
the values of the magnetic moments. In the range of the Hubbard
parameter values: 0 <U < 4 eV, values of the magnetic moments are
approximately 2.5 times larger than follows from the experiment [7].
For U > 4 eV the calculated values of the magnetic moments in
dependence on the values of the Hubbard's interaction parameters
sharply decrease and become approximately two times lower than the
experimentally observed [7]. To choose the most suitable model of the
electronic structure, a more detailed comparison with the experimental
data is needed, in particular, of the electronic heat capacity and
magnetic susceptibility.

Difficulty of the correct theoretical description of the magnetic state
of MnSi follows also from the experimental data on the phase transition,
whose nature has not been definitely ascertained. Renormalization
group analysis [4] leads to the conclusion that the observed magnetic
transition is not the second-order transition. On the other hand,
according to the experiment close to the temperature of the magnetic
transition ТC, the lambda-like maxima are formed on temperature
dependencies of the heat capacity (C(T)) and homogeneous magnetic
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susceptibility of MnSi. However, in the interval ТS > T> ТC there is a
"shoulder" on the С(Т) dependence [8]. According to results of the small-
angle neutron scattering [9,10], chiral fluctuations of the helicoidal
structure are observed in transition under consideration. Whereas the
radius of spin correlations close to the temperature ТS is approximately
equal to the period of the helicoidal superstructure, it then drops sharply
with the temperature growth.

In the work [11], the theory of a prolonged first-order phase
transition was developed, based on the Ginzburg-Landau functional
described by the interaction of fluctuation modes [11]. At that,
summands of the intermode interaction were considered without
accounting of the specific electronic structure of MnSi and in the
lowest fourth order in powers of the magnetization. Moreover, chiral
fluctuations observed experimentally, as well as the "shoulder" on the
temperature dependence of the heat capacity, were not obtained in
these calculations [10,11].

In the present work, we develop a phenomenological approach to
the description of phase transitions in helicoidal ferromagnets. The
quantum and thermal fluctuations of the electron density are consid-
ered within the model of the ground ferromagnetic state of MnSi,
supplemented with account for the DM-interaction. Evolution of the
electron and spin structures is studied in the temperature vicinity of the
magnetic phase transition, as well as the experimental features of the
temperature dependences of the heat capacity and homogeneous
magnetic susceptibility are explained.

2. Model

The Hamiltonian of the Hubbard-Kanamori model [12] for the
ferromagnetic state of strongly correlated electrons, supplemented by
addends, which take into account electron density fluctuations, asso-
ciated with intra-atomic Hubbard and Hund interactions, has the form

H H δH= + .U0 (1)

Here H ε a a= ∑ m σ m σ m σ m σk k k k0 , , , ,
(0)
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is the additive to the mean-field approximation, which takes into
account multiparticle correlations (U and J are the parameters of
Hubbard and Hund interactions); δn δn= ∑m mq q , δS δS= ∑m m

z
q,
( ) ,

δn n δ N= ∑ −m σ m σ q mq q, , , ,0
(0), n a a=m σ m σ m σq k k q, , , ,

+
+ , , , δS S δ M= −m

z
m
z

q mq q,
( ) ( )

,0
(0),

S σn= ∑ /2m
z

σ m σq q
( )

, , , while Mm
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(0) are the average values of the
spin and charge density operators in the mean-field approximation.

Turning to the determination of the partition function, let us use
the Matsubara representation of the interaction
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where Tτ is ordering operator in the Matsubara time τ.
Performing the Fourier transformations in (3) and introducing the

4-vector, we average over all directions of the spin axis of quantization.
For this, we introduce the unit vectors eq m,
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Accounting of the electron density fluctuations is carried out using
the formalism of Stratonovich - Hubbard transformations [13], which
reduces multiparticle interactions in (2) to the interaction of electrons
with fluctuating exchange (ξ) and charge (η) fields.
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where: a JU U J U J= ( − ) ( + 5 )−1 −1, b U U J= 4 ( − 5 )−1, UTс = ( )1/2,
Φ η T SpT H η Tξ ξ( , ) = − ln exp(− ( , )/ )τ eff is the free energy functional of
electrons, moving in one of the configurations of stochastic exchange
ξ( ) and charge η( ) fields,
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To describe the ferromagnetic helicoidal ordering, the expression
obtained for the free energy of the ferromagnetic state should be
corrected in order to describe the energy of the Dzyaloshinskii-Moriya
interaction in the mean-field approximation. For this purpose, we will
perform the following substitutions1
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Here [ ]h M d= ×D
mq q q

( )
, −0 0 0

is the Dzyaloshinsky's mean field,
idd q=q 00

, d is the Dzyaloshinskii constant, M S( = 〈 〉)m mq q, ,0 0
is vector

of inhomogeneous magnetization on the vector q0.
Here and below we take into account the fact that the first-principle

electronic structure of MnSi does not depend on the quantum number
m for ε μ UM− ≤ ~1eV(0) [3]. In this case, the chemical potential of the
electronic system is located in the lower band, with orbital degeneracy
equal to four [3].

3. The calculation of the statistical sum for considered
problem of chiral magnetics

Quantum-statistical calculation of the expression for the statistical
sum in the considered problem of chiral magnetics with anomalously
large periods of the magnetic spin structure will be carried out on the
basis of the approximation of homogeneous local fields [14]. In this
case, the spatial-temporal inhomogeneity of the spin system was
described by taking into account (q, ω)-dependence of the vertex part
of the second order - ϕ q q δ χ( , ′) = ′q q q

(2)
,

(0), which coincides with the
paramagnetic dynamic Pauli susceptibility. The latter determines the
dynamic exchange gain factor, anomalously strongly dependent upon q
and ω in ferromagnetic and long-period spin structures and near ТС. In
the framework (see, for example [15],) of the well-known approxima-
tion of the Lindhard function (χ ωq( , )(0) ), we have

1 This replacement turns out to be equivalent to adding to the free energy functional
the term d M M[ × ]q q q0, 0 − 0

.
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