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Abstract Unsteady Taylor–Couette flows of an Oldroyd-B fluid, which fills a straight circular

cylinder of radius R, are studied. Flows are generated by the oscillating azimuthal tension which

is given on the cylinder surface. As a novelty, authors used in this paper the governing equation

related to the tension field. The closed forms of the shear stress and velocity fields corresponding

to the flow problems are obtained by means of the integral transforms method. Expressions for

the azimuthal tension and fluid velocity were written as sums between the ‘‘permanent component”

(the steady-state component) and the transient component. By customizing values of parameters

from the mathematical model were obtained the corresponding solutions of other types of fluids,

namely, Maxwell fluids. By using numerical simulations and diagrams of the azimuthal stress,

the fluid behavior has been analyzed. The necessary time to achieve the ‘‘steady-state” was, also,

determined.
� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Oldroyd-B fluid model is very important among the fluids
of rate type due to its special behavior. Also, this model con-
tains the Newtonian fluid model and Maxwell fluid model as

special cases. The Oldroyd-B fluid model [1,2] considers the
memory effects and elastic effects exhibited by a large class
of fluids, such as the biological and polymeric liquids. Guillope

and Saut [3] and Fontelos and Friedman [4] established the sta-
bility, existence and uniqueness results for some shearing flows
of such fluids. Exact solutions for some simple flows of
Oldroyd-B fluids were presented by many authors, See, for

example, Rajagopal and Bhatnagar [5], Hayat et al. [6,7].

Recently, various problems regarding flows of Oldroyd-B
fluids through cylindrical domains have been studied. Singh
and Varshney [8] have considered the unsteady laminar flow

of an electrically conducting Oldroyd fluid through a circular
cylinder boundary by permeable bed under the influence of
an exponentially decreasing pressure gradient in porous
medium. Burdujan [9] studied Taylor–Couette flows of the

Oldroyd-B fluid with fractional derivatives within the annular
region between two infinitely coaxial circular cylinders due to a
time-dependent axial tension given on the surface of the inner

cylinder. The unsteady unidirectional transient flow of
Oldroyd-B fluid with fractional time derivatives, in an annular
domain, produced by a constant pressure gradient and a

translation with constant velocity of the inner cylinder was
studied by Mathur and Khandelwal [10]. Liu et al. [11] studied
some helical flows of an Oldroyd-B fluid with time-fractional
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derivatives, between two infinite concentric oscillating cylin-
ders and within an infinite circular oscillating cylinder. Most
existing solutions in the literature correspond to problems with

boundary conditions on the velocity. There are several practi-
cal problems with the specified force on the boundary [12–14].
For example in [12], Renardy has studied the motion of a Max-

well fluid across a strip bounded by parallel plates and proved
that, in order to formulate a well posed problem it is necessary
to impose the boundary conditions on the stresses at the inflow

boundary. In [13], Renardy explained how well posed
boundary value problems can be formulated using boundary
conditions on stresses. Waters and King [15] were among the
first specialists who used the shear stress on the boundary to

find exact solutions for motions of rate type fluids. Other inter-
esting problems regarding flows of non-Newtonian fluids, in
various geometry or boundary conditions, can be finding in

the references [17–23]. Our goal is to investigate unsteady flows
of Oldroyd-B fluids in an infinite circular cylinder. In the pre-
sent paper the governing equation of the flow is related to the

azimuthal tension and we considered the boundary conditions
on the shear stress. The flow of the fluid is due to rotation of
the cylinder around its axis, under the action of oscillating

shear stress fHðtÞ sinðxtÞ or fHðtÞ cosðxtÞ given on the bound-
ary. Finally, solutions of the Maxwell fluid flows are obtained
as particular cases of our general results. Also the comparison
between models is underlined by graphical illustrations.

2. Problem formulation

The constitutive equations for an Oldroyd-B fluid [1] are

T ¼ � pIþ S;Sþ k
dS

dt
� LS� SLT

� �

¼ l Aþ kr
dA

dt
� LA� ALT

� �� �
;

ð1Þ

where T is Cauchy stress tensor, �pI is indeterminate spherical
stress, S is extra stress tensor, L is velocity gradient, l is the

dynamic viscosity, A ¼ Lþ LT is first the Rivilin–Erickson

tensor, k and kr (0 6 kr < k) are relaxation and retardation
time. Assume an infinite circular cylinder of radius R with axis
of rotation along z-axis. Cylinder is filled with an Oldroyd-B

fluid which is at rest at time t ¼ 0. After time t ¼ 0þ the cylin-
der applies an oscillating rotational shear stress fHðtÞ sinðxtÞ
or fHðtÞ cosðxtÞ to the fluid, f > 0 is constant and x is the

angular frequency of oscillations. We assume that, the fluid
is incompressible and homogeneous. Furthermore we assume
that velocity field and extra-stress tensor are of the form

V ¼ Vðr; tÞ ¼ wðr; tÞeh; S ¼ Sðr; tÞ; ð2Þ
where eh is the unit vector in the h direction of the cylindrical
coordinate system. Since the fluid and the cylinder are at rest at
time t ¼ 0, therefore,

wðr; 0Þ ¼ 0; Sðr; 0Þ ¼ 0: ð3Þ
Introducing (2) in ð1Þ2 and by using (3) we get

Srr ¼ Srz ¼ Szh ¼ Szz ¼ 0, along with the following meaningful
partial differential equation

1þ k
@

@t

� �
sðr; tÞ ¼ l 1þ kr

@

@t

� �
@

@r
� 1

r

� �
wðr; tÞ; ð4Þ

where sðr; tÞ ¼ Srhðr; tÞ is one of the nonzero component of

extra stress tensor. The balance of linear momentum in the
absence of body forces reduces to [8]

q
@wðr; tÞ

@t
¼ @

@r
þ 2

r

� �
sðr; tÞ; ð5Þ

sstðr; tÞ q being the constant density of the fluid. By eliminating
wðr; tÞ between Eqs. (4) and (5) we get the following governing
equation for the shear stress [24]

1þ k
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@t
¼ m 1þ kr
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sðr; tÞ;

ð6Þ
where m ¼ l

q is the kinematic viscosity of the fluid. The appro-

priate initial and boundary conditions are

sðr; tÞjt¼0 ¼
@sðr; tÞ

@t

����
t¼0

¼ 0; ð7Þ

sðR; tÞ ¼ fHðtÞ sinxt or sðR; tÞ ¼ fHðtÞ cosxt; ð8Þ
HðtÞ being the Heaviside unit step function. Converting our

problem (6)–(8) into the complex field (s ¼ sc þ iss with sc
and ss being solutions for cosine, respectively sine boundary
conditions), we have

1þ k
@
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sðr; tÞ ð9Þ

sðr; tÞjt¼0 ¼
@sðr; tÞ

@t

����
t¼0

¼ 0 ð10Þ

sðR; tÞ ¼ fHðtÞeixt; f > 0: ð11Þ
By introducing the following dimensionless quantities

t� ¼ t

k
; r� ¼ r

R
; w� ¼ w

U0

; s� ¼ s
f
; U0 ¼ kf

qR
; b� ¼ kr

k
; x� ¼ kx;

ð12Þ
Eqs. (5), (9)–(11) becomes (dropping the star notation)
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sðr; tÞjt¼0 ¼
@sðr; tÞ

@t

����
t¼0

¼ 0; wðr; 0Þ ¼ 0 ð15Þ

sð1; tÞ ¼ HðtÞeixt; ð16Þ
where Re ¼ R2

km is the Reynolds number.

3. Solution of the problem

In order to determine the exact analytical solution, we shall use
the Laplace and finite Hankel transforms [25]. By applying the

temporal Laplace transform to Eqs. (14) and (16) and using
the initial conditions (15) we get the following transformed
forms,

Reð1þ qÞqsðr; qÞ ¼ ð1þ bqÞ @2

@r2
þ 1

r

@

@r
� 4

r2

� �
sðr; qÞ; ð17Þ
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