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A B S T R A C T

We used the two-time Green function framework to investigate the role played by the easy-axis single-ion
anisotropy on the phase diagram of (d > 2)-dimensional spin-1planar ferromagnets, which exhibit a magnetic
field induced quantum phase transition. We tackled the problem using two different kind of approximations: the
Anderson-Callen decoupling scheme and the Devlin approach. In the latter scheme, the exchange anisotropy
terms in the equations of motion are treated at the Tyablikov decoupling level while the crystal field anisotropy
contribution is handled exactly. The emerging key result is a reentrant structure of the phase diagram close to
the quantum critical point, for certain values of the single-ion anisotropy parameter. We compare the results
obtained within the two approximation schemes. In particular, we recover the same qualitative behavior. We
show the phase diagram, close to the field-induced quantum critical point and the behavior of the susceptibility
for different values of the single-ion anisotropy parameter, enhancing the differences between the two different
scenarios (i.e. with and without reentrant behavior).

1. Introduction

The study of quantum magnetic systems is a very active research
subject in condensed matter physics [1,2]. Experiments have shown
that, in complex magnetic materials, crystal anisotropy fields exist
which play an important role in determining their thermodynamics
properties [2–5]. Theoretically, a suitable description of such materials
can be performed including, in the Heisenberg model with exchange
anisotropy, additional anisotropic crystal fields as easy-plane or easy-
axis single-ion anisotropy [2,6–10]. In this context, the planar ferro-
magnet (PFM), i.e. a XXZ model with in-plane exchange interactions
greater than the longitudinal ones, is of broad interest as a starting
point due to its numerous applications [11–20]. This model, without
any further anisotropy, exhibits a magnetic-field induced quantum
phase transition (QPT) and the related quantum critical properties,
including the low-temperature phase diagram, have been studied with
different approaches [11–20]. It is, however, inadequate for a more
accurate study of magnetic materials with a complex crystalline
structure. Indeed in recent years, the quantum criticality in magnetic
systems with different types of anisotropies [16–21], in particular
single-ion anisotropy (SIA) measured by a parameter D, have attracted
a great deal of experimental [22–26] and theoretical interest [27–32].

In this paper we use the two-time Green function (GF) method to

study the PFM and the influence of SIA on its magnetic field induced
QPT. This method has been proved through several decades to be one
of the most powerful tools in the theory of magnetism, but it has
attracted less attention in exploring quantum critical properties close to
a QPT of spin models with crystal-field anisotropies. Usually, for
conventional finite-temperature phase transitions one uses decouplings
for single-sites higher order GFs in the equations of motion, as the
Anderson-Callen decoupling (ACD) [35], which were proved to be
adequate only for sufficiently small D [36,2]. For the Heisenberg model
with SIA, Devlin [36] showed explicitly that the difficulties arising for
large D can be overcome since the single-ion higher order terms in the
equations of motion can be treated exactly. Indeed he found that for
spin S ≥ 1 the problem can be reduced to a closed system of S2
equations of motion. In the present work we are going to use both
approaches to determine the phase boundary for the spin-(S = 1) XXZ
model with additional single-ion anisotropy, and we compare the
results.

Remarkably, within both approximation schemes, we find a non-
conventional quantum critical scenario involving reentrant phenom-
ena, which appears when the easy axis crystal field exceeds a certain
threshold value. These phenomena are found to occur in the phase
diagrams of a wide variety of materials stimulating recently a lot of
experimental and theoretical interest. The term “reentrant” refers to a
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phase transition to an ordered phase (OP) at some temperature
followed by a transition to a disordered phase (DP) at a lower
temperature. Reentrant phase diagrams have been observed, for
instance, in complex ferromagnetic and antiferromagnetic systems
with different types of anisotropies and applied magnetic fields [37–
39], superconducting compounds [40–42] and in many other systems
[43–47].

2. The model and the two-time Green's function framework

We study the following Heisenberg Hamiltonian with magnetic
anisotropies:
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where S α x y z( = , , )i
α are the spin components at site i of a d-

dimensional hypercubic lattice with N sites and unit lattice spacing,
Jij and Kij (with J K= = 0ii ii ) are the FM exchange couplings, D > 0 is
the easy-axis SIA parameter and H is the applied magnetic field along
the longitudinal direction. For D = 0, the anisotropic exchange inter-
actions may compete providing: the easy-axis FM if K J>ij ij with the
extreme limit J = 0ij (Ising model); the isotropic Heisenberg model if
K J=ij ij; and the easy-plane (or planar) ferromagnet if K J<ij ij, with the
extreme limit K = 0ij defining the XY model. We limit ourselves to the
easy-plane exchange (K J<ij ij) case [14,17,20].

We now introduce the retarded two-time GF [33,34]
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where A t e Ae( ) = i t i t− , θ x( ) is the step function,
e Tr e⋯ = Tr(⋯ )/ ( )β β− − denotes a canonical average and β T= 1/

is the inverse temperature.
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where m S= i
z is the longitudinal magnetization per spin.

The equation of motion for G ω( )ij is not in a closed form, due to the
presence of higher order GFs. In order to get a closed equation of
motion for G ω( )ij , the higher order Green's functions on the right hand
side of Eq. (3) have to be properly decoupled. We have used two
different decoupling schemes [33–36] and in the present paper we
want to stress the differences in the phase diagram obtained.

2.1. “Devlin” framework

Within this approximation scheme we introduce another GF in
order to treat the SIA term exactly

Γ ω A S( ) = | ,ij i j ω
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(4)
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Eqs. (3) and (5) are exact but they still do not constitute a closed

system of equations for G ω( )ij and Γ ω( )ij . According to the suggestion by
Devlin [36] we adopt, for the exchange contribution in Eqs (3) and (5),

the simplest Tyablikov-like decouplings
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which satisfy consistently the criterion to neglect the motion of spin at
different sites as in the usual Tyablikov decoupling. In contrast, for the
crystal-field anisotropy term with identical indices, we use exact
transformations based on well known identities for spin-1 operators
[2,36,48].

We stress that the Tyablikov-like approximations made in Eq. (6)
for the exchange higher order terms in the equations of motion have
been extensively used in literature providing reliable results in a clear
way. Physically, with the first two decouplings we neglect correlations
between spins located in different sites. Besides, the last approxima-
tion, suggested originally by Devlin [36], is quite reasonable since the
operators Si

+ and Si
− represent the transverse motion of the spins and

only Si
z and qi

z have finite ensemble averages, especially close to a QCP.
Working in the wave-vector-frequency ωk( , )-space (k ranging in the
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motion
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This constitutes now a closed system of two linear algebraic equations
whose solutions, after some algebra, can be written in the polar form
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are the dispersion relations (or resonance frequencies), with
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From previous findings it is evident that for exploring the thermo-
dynamics of our model within the GFs framework, one needs to know
m S= z and q S= 3 ( ) − 2z 2 as functions of T and of the other
parameters involved (such as H J K D, , , ). This can be achieved by
using appropriate spin-operator identities
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for spin S = 1 and then determining the basic correlation functions via
the spectral theorem [33,20]. Hence we get the exact relations
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