
Author's Accepted Manuscript

Salt-Assisted Clean Transfer of Continuous Monolayer MoS₂ Film for Hydrogen Evolution Reaction

Heung-Yeol Cho, Tri Khoa Nguyen, Farman Ullah, Jong-Won Yun, Cao Khang Nguyen, Yong Soo Kim

www.elsevier.com/locate/physb

PII: S0921-4526(17)30759-7

DOI: https://doi.org/10.1016/j.physb.2017.10.026

Reference: PHYSB310383

To appear in: Physica B: Physics of Condensed Matter

Received date: 13 December 2016 Revised date: 27 September 2017 Accepted date: 5 October 2017

Cite this article as: Heung-Yeol Cho, Tri Khoa Nguyen, Farman Ullah, Jong-Won Yun, Cao Khang Nguyen and Yong Soo Kim, Salt-Assisted Clean Transfer of Continuous Monolayer MoS₂ Film for Hydrogen Evolution Reaction, *Physica B: Physics of Condensed Matter*, https://doi.org/10.1016/j.physb.2017.10.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Salt-Assisted Clean Transfer of Continuous Monolayer MoS₂ Film for Hydrogen Evolution Reaction

Heung-Yeol Cho ¹, Tri Khoa Nguyen ¹, Farman Ullah ¹, Jong-Won Yun ¹, Cao Khang Nguyen ^{2,3} and Yong Soo Kim ^{1,*}

¹Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610, South Korea

²Center of Nano Science and Technology, Hanoi National University of Education, Hanoi 1 122000, Vietnam.

³Department of Physics, Duy Tan University, Danang 550000, Vietnam.

*Corresponding author: E-mail: yskim@ulsan.ac.kr (Y. S. Kim), Tel: +82-(52)-259-3632, Fax: +82-(52)-259-1693,

Abstract

The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS₂ film continuously grown on a SiO₂/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water-soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS₂ on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS₂ film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS₂ film. Specially, we demonstrate that monolayer MoS₂ film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel

Download English Version:

https://daneshyari.com/en/article/8161440

Download Persian Version:

https://daneshyari.com/article/8161440

<u>Daneshyari.com</u>