Accepted Manuscript

Thermoelectric power factor of $La_{0.9}M_{0.1}FeO_3$ (M = Ca and Ba) system: Structural, band gap and electrical transport evaluations

N. Karthikeyan, R. Ramesh Kumar, G. Jaiganesh, K. Sivakumar

PII: S0921-4526(17)30726-3

DOI: 10.1016/j.physb.2017.09.131

Reference: PHYSB 310357

To appear in: Physica B: Physics of Condensed Matter

Received Date: 3 July 2017

Revised Date: 18 September 2017 Accepted Date: 30 September 2017

Please cite this article as: N. Karthikeyan, R.R. Kumar, G. Jaiganesh, K. Sivakumar, Thermoelectric power factor of $La_{0.9}M_{0.1}FeO_3$ (M = Ca and Ba) system: Structural, band gap and electrical transport evaluations, *Physica B: Physics of Condensed Matter* (2017), doi: 10.1016/j.physb.2017.09.131.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Thermoelectric Power Factor of $La_{0.9}M_{0.1}FeO_3$ (M = Ca and Ba) System: Structural, Band gap and Electrical Transport Evaluations

N. Karthikeyan^{a@}, R. Ramesh Kumar^a, G. Jaiganesh^b and K. Sivakumar^a

^aDepartment of Physics, Anna University, Chennai – 600025, INDIA ^bThe Institute of Mathematical Sciences, Taramani, Chennai – 600113, INDIA [@] karthin10@gmail.com

ABSTRACT

The search for thermoelectric materials has been incredibly increased due to the increase in global energy demand. Hence the present work focus on preparation and characterization of thermal transport phenomena of pure and Ba/Ca substituted perovskite LaFeO₃ orthoferrite system. The conventional solid state reaction technique is utilized for the preparation of LaFeO₃ and La_{0.9} $M_{0.1}$ FeO₃ (M = Ca and Ba) compounds. Crystal structure analyses of the prepared samples are analyses using Rietveld refinement process which confirms the orthoferrite crystal structure of all the prepared compounds with induced distortion in position of atoms by the incorporation of substituent atoms. The electronic structure calculations are performed by VASP. As the LaFeO₃ compound is a strongly energy correlated system, the Density Functional Theory (DFT) calculations are performed by DFT + U (Hubbard function) method. The computed band gap values are compared with the energy gap values calculated from UV-Vis spectral analysis. Electrical conductivity measurement and Arrhenius behavior for the temperature range of room temperature to 650 K are analyzed and the drift increase in conductivity with respect to temperature is due to the thermally activated mobility of charge carriers. Temperature dependent thermopower analysis is also examined using homemade seebeck coefficient measurement system. The calculation of thermoelectric power factor reveals that the Ba substituted LaFeO $_3$ compound show highest power factor value of 3.73 $\mu W/K^2\,cm$ at higher temperature and the superior power factor values observed in the Ba substituted compound determine the material's capability in power generating devices based on thermoelectric effect.

Download English Version:

https://daneshyari.com/en/article/8161597

Download Persian Version:

https://daneshyari.com/article/8161597

<u>Daneshyari.com</u>