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A B S T R A C T

We seek the possible polynomial solutions of the Schr€odinger equation for the sextic and decatic potentials. Under
certain conditions on the parameters of the potentials, we show that these potentials are exactly solvable. We
evaluate the first four eigenstates for both potentials. We derive general expressions of the energy levels, for high
energy levels, eigenvalues are a function of potentials' parameters and the eigenfunction's zeros.

1. Introduction

Anharmonic oscillators have an important role in the evolution of
many branches of physics. In fact, their importance is due to the anhar-
monic nature of many quantum systems vibrations. The number of
quantum systems, whose Schr€odinger equation has exact solutions is very
limited such as harmonic oscillator and hydrogen atom. For complicated
potential energy problems, many numerical methods were developed
[1–10]. To determine the ground state eigenvalues and eigenfunctions
for polynomial potentials, A. De Freitas et al. [11] used an extended
two-point quasi-rational approximation technique. However, G. M.
Gayathri et al. [12] applied the Ginsberg-Montroll method. In order to
calculate both the wave functions and the energy eigenvalues for the
ground and first excited states of the quartic, sextic and octic potentials
with high precision. P. Amore et al. [13] performed a comparative study
of quantum anharmonic potentials.

Furthermore, F.M. Fern�andez and H. Ciftci [14] accomplished alter-
native perturbation expansions for the sextic anharmonic oscillator.
Recently, the analytic (polynomial) solutions have been introduced to
investigate Schr€odinger equation solutions for confined and unconfined
quantum systems [15–20]. In fact, D. Brandon and N. Saad [21] showed
that under certain conditions on the potential's parameters, the decatic
polynomial potential was exactly solvable and for arbitrary values of the
potential parameters, the asymptotic iteration method was presented.
Moreover, if these solutions are available, they constitute very important
tools to check and improve numerical solutions presented to solve
complicated physical systems. The solvability of such problems is directly

tied to the finite-degree polynomial representation of the potential and
wavefunctions that decay exponentially.

In this paper, before introducing the polynomial structure, we
formulate the problem. Then, to make paper easy to read, we briefly
recall the asymptotic iteration method in the second section. Here, we
perform the necessary and sufficient conditions for the corresponding
energy-dependent polynomial solutions. On the following section, we
solve the well-known harmonic oscillator potential problem. In Section 4,
we study the sextic anharmonic potential problem, the first five energies
levels values are calculated. Section 5 concerns decatic anharmonic po-
tential case. Finally, the conclusion is given in Section 6.

2. Problem formulation

2.1. Schr€odinger equation

Solving the one-dimensional time-independent Schr€odinger equation
is a fundamental and primary step in order to calculate the energy ei-
genvalues for anharmonic oscillator potentials. The time-independent
Schr€odinger equation may be written as:

�ℏ2

2m
d2ψnðxÞ
dx2

þ VðxÞψnðxÞ ¼ EψnðxÞ (1)

where VðxÞ ¼ α2x2 þ α4x4 þ…þ α2Nx2N ;
α2 ¼ 1

2 k;
and ω2 ¼ k

m ;
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VðxÞ is an anharmonic symmetric potential energy ðα2N >0Þ, E the
system's energy and ψn is the wave function (nth eigenstate). Dividing Eq.
(1) by ℏω we find that:

� ℏ
2ωm

d2ψnðxÞ
dx2

þ
� α2

ℏω
x2 þ α4

ℏω
x4 þ…þ α2N

ℏω
x2N

�
ψnðxÞ ¼

E
ℏω

ψnðxÞ:
(2)

Putting λ ¼ ℏ
2ωm and ε ¼ E

ℏω and changing to the vari-

able y ¼
�

2ωm
ℏ

�1=2

x,

We deduce the dimensionless equation:

d2ψnðyÞ
dy2

þ
�
ε�

� α2

ℏω
λy2 þ α4

ℏω
λ2y4 þ…þ α2N

ℏω
λNy2N

��
ψnðxÞ ¼ 0; (3)

and

d2ψnðyÞ
dy2

þ ðε� vðyÞÞψnðxÞ ¼ 0; (4)

where vðyÞ ¼ b2y2 þ b4y4 þ…þ b2Ny2N ;
b2i ¼ ∝2i

ℏωλ
i;

and i ¼ 2;4;6…:

We will examine the polynomial solutions of this linear differential
equation. The necessary and sufficient conditions for corresponding
energy-dependent polynomial solutions will be given in detail.

2.2. Polynomial solution structure

To solve our problem, firstly, we suppose the solution as:

ψnðyÞ ¼ AfnðyÞexpð � hðyÞÞ; (5)

where the functions f and h are given by fnðyÞ ¼

8<
:

1 for n ¼ 0Yn
j¼1

ðy � yjnÞ for n>0 ; yjn are the eigenstates nodes (wave function's

zeros) and hðyÞ ¼ PN
p¼1a2py

2p , the coefficients a2p are real and a2N
positive, and A is the wave's normalization constant. Secondly, for even
potential energy, wave functions are either symmetric or antisymmetric;
consequently, their zeros are opposite two by two. The substitution of the
wave function ψn given by Eq. (5) in Eq. (4), leads to the necessary and
sufficient conditions for corresponding energy-dependent poly-
nomial solutions:

GnðyÞ ¼ 1
Aexpð � hðyÞÞ

d2ψnðyÞ
dy2

þ ðε� vðyÞÞfnðyÞ ¼ 0: (6)

2.3. Asymptotic iteration method

Asymptotic iteration method states that the wave function has the
following form: Ψ nðyÞ ¼ fnðyÞe�βy2 ; where β is an adjustable parameter.
The adjustable parameter β was introduced in order to improve its rate of
convergence and should be positive; otherwise, the normalization con-
dition of the wave function will be violated. It should yield the best
convergence rate, i.e. the minimum number of iterations. Moreover,
these solutions are valuable tools for checking and improving numerical
methods introduced for solving complicated physical systems.

3. The harmonic oscillator potential

Considering the well-known case of the harmonic oscillator potential

vðyÞ ¼ b2y2; with b2 positive, the necessary and sufficient conditions are:

GnðyÞ ¼ 1
Aexpð � hðyÞÞ

d2ψnðyÞ
dy2

þ �
ε� b2y2

�
fnðyÞ ¼ 0; (7)

The node-less eigenfunction is given by
ψ0ðyÞ ¼ Af0ðyÞexpð � hðyÞ Þ with f0ðyÞ ¼ 1 and hðyÞ ¼ PN

p¼1a2py
2p Intro-

ducing this solution in Eq. (7) leads to the system:

N ¼ 1; (8)

a2 ¼
ffiffiffiffiffi
b2

p
2

; (9)

E0 ¼
ffiffiffiffiffi
b2

p
; (10)

However, the first eigenstate wave function can be written as ψ1ðyÞ ¼
Af1ðyÞexpð�hðyÞÞ with f1ðyÞ ¼ ðy � y11Þ; y11; to be the single zero of the
wave function and hðyÞ ¼ PN

p¼1a2py
2p; Eq. (7) confirms that

N ¼ 1; (11)

a2 ¼
ffiffiffiffiffi
b2

p
2

; (12)

E1 ¼ 3
ffiffiffiffiffi
b2

p
; (13)

y11 ¼ 0; (14)

But, the second eigenstate wave function ψ2ðyÞ ¼ Af 2ðyÞexpð�hðyÞÞ;
where f 2ðyÞ ¼ ðy � y12Þðy � y22Þ, and the couple ðy12; y22Þ constitutes
the two zeros of the wave function; note that, they are opposite, i.e.
y12 ¼ �y22. Eq. (7) offers this system of equations:

N ¼ 1; (15)

a2 ¼
ffiffiffiffiffi
b2

p
2

; (16)

E2 ¼ 5
ffiffiffiffiffi
b2

p
; (17)

y12 ¼ �y22 ¼ 1ffiffiffi
2

p
b
1
4
2

; (18)

Nevertheless, The third eigenfunction is ψ3ðyÞ ¼ Af3ðyÞexpð �
hðyÞ Þ with f3ðyÞ ¼ ðy � y13Þðy � y23Þ ðy � y33Þ: Here y13; y23; and y33 are
the wave function's zeros, let us take y13 ¼ 0 and ðy23 ¼ �y33Þ. We obtain
for this third eigenstate the following equations system:

N ¼ 1; (19)

a2 ¼
ffiffiffiffiffi
b2

p
2

; (20)

E3 ¼ 7
ffiffiffiffiffi
b2

p
; (21)

y13 ¼ 0; (22)

y23 ¼ �y33 ¼
ffiffiffi
6

p

2b
1
4
2

; (23)

To finish, the fourth eigenfunction is defined by ψ4ðyÞ ¼
Af 4ðyÞexpð�hðyÞÞ with f 4ðyÞ ¼ ðy � y14Þðy � y24Þðy � y34Þðy � y44Þ
y14; y24; y34 and y44 are the wave function's zeros they are opposite two
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