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A B S T R A C T

In this paper we have studied the stabilization of the long-range order in (z; x)-plane of two isotropic Heisenberg
ferromagnetic monolayers coupled by a short-range exchange interaction (J⊥), by a long range dipole-dipole
interactions and a magnetic field. We have applied a magnetic field along of the z-direction to study the thermo-
dynamic properties above the critical temperature. The dispersion relation 𝜔 and the magnetization are given
as function of dipolar anisotropy parameter defined as Ed = (g𝜇)2S∕a3J∥ and for other Hamiltonian parameters,
and they are calculated by the double-time Zubarev-Tyablikov Green’s functions in the random-phase approxi-
mation (RPA). The results show that the system is unstable for values of Ed ≥ 0.012 with external magnetic field
ranging between H∕J∥ = 0 and 10−3. The instability appears for Ed larger then Ec

d = 0.0158 with H∕J∥ = 10−5,
Ec

d = 0.02885 with H∕J∥ = 10−4, and Ec
d = 0.115 with H∕J∥ = 10−3, i.e., a small magnetic field is sufficient to

maintain the magnetic order in a greater range of the dipolar interaction.

1. Introduction

In the last three decades it has been of great interest to know the
magnetic properties of thin films [1–3]. These systems are interesting
because they are linked to technological applications which moves the
advancement of condensed matter physics [4]. There are also academic
interests that considers interesting the highly non-linear response to
small disturbances, and also because they present new physical phe-
nomena, such as, giant magnetoresistance [5] and oscillating interlayer
exchange coupling [6]. They also are interesting due to exist contradic-
tions between theoretical and experimental predictions, for example,
Bloch [7] indicated that a 2D magnetic system, whose spins are cou-
pled by isotropic short-range exchange interactions, cannot display any
long-range magnetic order at finite temperature, this result was proved
by Mermin and Wagner [8]. From an experimental point of view, the lit-
erature results show that 2D magnetic systems exhibit phase transitions
at finite temperature [9–15,17]. Naturally this fact occurs because a real
system is composed by particles coupled by various interactions (short,
long, isotropic and anisotropic, and so on). Besides this fact and con-
sidering that, strictly speaking, there are not experimental realizations
easy of magnetic systems in two dimensional, and then in many practi-
cal cases, the quasi-two-dimensional systems are used as a good approx-
imation [16]. Therefore, it does not violate Mermin-Wagner theorem.

The classical and quantum Heisenberg model is the most appropri-
ate theoretical model to describe static magnetism in a 2D lattice. For
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this reason, it is very important to increase the knowledges about the
Heisenberg model once this theoretical description can give us the over-
all thermodynamic properties in magnetic systems. On the other hand,
in its simplest case, this model incorporates only a short-range isotropic
exchange coupling, and for this reason, the isotropic Heisenberg model
in 2D does not explain the long-range order. There are several others
studies that generalize the Heisenberg model, for example the intro-
duction of interactions like magnetocrystalline anisotropy [18–20] and
dipole-dipole interactions [21–23], that give rise relevant results and
more realistic. These interactions completely change the properties of
the magnetic system, giving an explanation about the long-range order
to the theoretical model. Regarding the dipole-dipole interaction, it is
very interesting to observe that this interaction give a weaker contribu-
tion than the exchange interaction, but it is a long-range and isotropic
interaction in the spin space. Therefore, due to both properties the
dipole-dipole interaction is essential for stabilizing long-range magnetic
order, as have been shown at long time ago [21,22], and recently [24].

A further interesting question accounts for the competition between
the exchange interaction and the magnetic anisotropy. In thin films,
as in transition metal, the isotropic exchange interaction is much
larger than the anisotropy, but experimental results shows that such
anisotropies affect the magnetic properties of the ferromagnetic and
paramagnetic phases. This magnetic anisotropy ranges, besides the
Curie temperature (Tc) is one important difference between magnetism
in 2D and 3D lattices.
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In addition, ferromagnetic systems such as (CH3NH3)2-CuCl4, which
has a quasi-two-dimensional ordination, presents anisotropy of mag-
netic susceptibility preserved until T ≈ 1.2Tc [25], although several
experimental technique has been used to investigate the existence of
an isotropic magnetic susceptibility in epitaxial Fe/W(110) films [26]
and in Co-films grown on a vicinal Cu-substrate [27], both with param-
agnetic phase.

Moreover, a great attention has been given to understand the com-
petition between interactions of short- and long-ranges [28–30]. In par-
ticular, the elementary excitation spectrum of a system, only with ferro-
magnetic isotropic exchange interaction, presents in 2D and 3D lattices
an excitation mode proportional to k2, i.e., (𝜔 ∼ k2) in the region of
k → 0. When the dipolar interaction is taken into account, the shape
of the dispersion relation changes dramatically. The 3D case presents
𝜔 ∼ k and the 2D case presents 𝜔 ∼

√
k.

In the present paper, we applied the Green’s functions technique to
extend the previously work by Arruda and co-workers [23], in which
the problem of competition between exchange interaction, with short-
range order, and the dipole-dipole interaction shows that the dipole-
dipole interaction leads from a ferromagnetic order to an instability at
a critical value Ec

d = 0029, in a system composed by a bilayer of cubic
(001) lattice. In our calculation, we applied a magnetic field H along of
z direction and show that a field with low intensity is enough to give
rise stability to the long-range order interaction.

The remainder of the paper is organized as follows. The Hamiltonian
model and theoretical method are introduced in Sec. 2. In Sec. 3, we
present an discuss the results obtained for the dispersion relation, the
thermal behavior of the magnetization and finally some conclusions are
given.

2. Theoretical model and Green’s functions formalism

In this paper, we calculate the effects of a dipolar interaction on the
magnetic properties of ferromagnetic bilayer above the critical temper-
ature due to application of an external magnetic field. The system is
composed by two superposed layers, namely l- and m-layer, of a square
lattice sorted out by a distance y, corresponding to a 3D tetragonal
structure, and in particular to a (010) simple cubic one for y = a, as
show the schematic representation in Fig. 1. Each layer is composed by
N∕2 magnetic moments and each magnetic moment interact ferromag-
netically with the nearest neighbor spins through short-range exchange
interaction (J > 0). Here J = (J∥, J⊥), where J∥ couples only the near-
est neighbor spins located within each layer and J⊥ couples the nearest

neighbor spins located in the different layers. The interaction of a mag-
netic moment with all others is considered through the dipolar long-
range interaction. An external magnetic field is applied in the direc-
tion of easy z-axis at all lattice points. We have considered the bilayer
immersed in a non-magnetic medium, i.e., diamagnetic material, rep-
resented by a 2D quantum Heisenberg model of spin-1∕2 with short-
range interactions, long-range interactions and a Zeeman term, which
is described by the total Hamiltonian.

 = ex +ze +dd, (2.1)

where, ex is the exchange interaction Hamiltonian, ze is the Zee-
man effect Hamiltonian and dd is the dipole-dipole interaction Hamil-
tonian. We consider the spins S localized on the sites of two infinite
square lattices parallel to the (z,x)-plane. Moreover, we are assuming
that the nearest neighbor spins interact ferromagnetically in the plane
and between planes. Now, introducing the relation S±i = Sx

i ± iSy
i , and

the commutation relations between the spin operators [𝐒−i , 𝐒
+
j ] = 2𝐒z

i 𝛿ij

and [𝐒±i , 𝐒
z
j ] = ∓𝐒±i 𝛿ij, the exchange interaction Hamiltonian ex (short-

range) can be written as

ex = −
∑
i≠j

∑
j

Jij

[1
2
(S+i S−j + S−i S+j ) + Sz

i S
z
j

]
. (2.2)

where the summations run over all distinct pairs of nearest neighbor
spins on the lattice. The Jij is equal to J∥ in plane and J⊥ in inter-plane.
The term of Zeeman effect in Eq. (2.1), due to external magnetic field
applied along the z-axis, is given by

ze = −h
∑

i
Sz

i . (2.3)

This term ensures that in the ground state (T = 0), the magnetic
dipole moments are aligned in the direction of the z-axis. In this equa-
tion, we have h = g𝜇BH0, where 𝜇B is the Bohr magneton, H0 is the
external magnetic field and g is the Landé factor.

The dipole-dipole interaction Hamiltonian (long-range), in Eq. (2.1),
is given by Refs. [23,30].

Hdd = 1
2

g2𝜇2
B

∑
i≠j

∑
j

1
R3

ij

{
𝐒i ⋅ 𝐒j −

3
R2

ij
(𝐒i ⋅ 𝐑ij) (𝐒j ⋅𝐑ij)

}
, (2.4)

where 𝐑ij = 𝐑i − 𝐑j is the relative position of sites i-j, which can be
written in terms of circular coordinates. Now, introducing 𝛾 = g𝜇B,
R±

ij = Rx
ij ± iRy

ij and using the commutation relations between the spin
operators above defined, we obtain

Fig. 1. (a) 3D Schematic representation of a magnetic bilayer geometry. Two points of view are shown in (b) with a diamagnetic material between the layers: (y,z) plane on top and
(x,z) plane on bottom.
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