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A B S T R A C T

We investigate the properties of magnon edge states in a ferromagnetic honeycomb lattice with armchair bound-
aries. In contrast with fermionic graphene, we find novel edge states due to the missing bonds along the bound-
ary sites. After introducing an external on-site potential at the outermost sites we find that the energy spectra
of the edge states are tunable. Additionally, when a non-trivial gap is induced, we find that some of the edge
states are topologically protected and also tunable. Our results may explain the origin of the novel edge states
recently observed in photonic lattices. We also discuss the behavior of these edge states for further experimental
confirmations.

1. Introduction

One intriguing aspect of electrons moving in finite-sized honeycomb
lattices is the presence of edge states, which have strong implications
in the electronic properties and play an essential role in the electronic
transport [1–3]. It is well known that natural graphene exhibits edge
states under some particular boundaries [4,5]. For example, there are
flat edge states connecting the two Dirac points in a lattice with zig-zag
[1] or bearded edges [6]. On the contrary, there are no edge states in
a lattice with armchair boundary [7], unless a boundary potential is
applied [8].

The edge states have also been studied in magnetic insulators
[9–11], where the spin moments are carried by magnons. Recently,
it has been shown that the magnonic equivalence for the Kane-Mele-
Haldane model is a ferromagnetic Heisenberg Hamiltonian with the
Dzialozinskii-Moriya interaction [12,13]. Firstly, while the energy band
structure of the magnons of ferromagnets on the honeycomb lattice
closely resembles that of the fermionic graphene [14,15], it is not clear
whether or not they show similar edge states, particularly in view of the
interaction terms in the bosonic models which are usually ignored in
graphene [16]. Secondly, most recent experiments in photonic lattices
have observed novel edge states in honeycomb lattices with bearded
[17] and armchair [18] boundaries, which are not present in fermionic
graphene. The main purpose of this paper is to address these two
issues. By considering a ferromagnetic honeycomb lattice with arm-
chair boundaries, we find that the bosonic nature of the Hamiltonian
reveals novel edge states which are not present in their fermionic coun-
terpart. After introducing an external on-site potential at the outermost
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sites, we find that the edge states are tunable. Interestingly, we find that
the nature of such edge states is Tamm-like [19], in contrast with the
equivalent model for armchair graphene [8] but, as mentioned earlier,
in agreement with the experiments in photonic lattices [17,18]. Fur-
thermore, after introducing a Dzialozinskii-Moriya interaction (DMI),
we find that the topologically protected edge states are sensitive to the
presence of the Tamm-like states and they also become tunable.

2. Model Hamiltonian

We consider the following Hamiltonian for a ferromagnetic honey-
comb lattice,

H = −J
∑
⟨i,j⟩ Si ⋅ Sj +

∑
⟨⟨i,j⟩⟩ Dij ⋅

(
Si × Sj

)
, (1)

where the first summation runs over the nearest-neighbors (NN) and
the second over the next-nearest-neighbors (NNN), J > 0 is the isotropic
ferromagnetic coupling, Si is the spin moment at site i and 𝐃ij is the DMI
vector between NNN sites [20]. If we assume a lattice in the x-y plane,
according to Moriya’s rules [20], the DMI vector vanishes for the NN
but has non-zero component along the z direction for the NNN. Hence,
we can assume Dij = D𝜈ij ẑ, where 𝜈ij = ±1 is an orientation dependent
coefficient in analogy with the Kane-Mele model [21]. For the infinite
system in the linear spin-wave approximation (LSWA), the Hamiltonian
in Eq. (1) can be reduced to a bosonic equivalent of the Kane-Mele-
Haldane model [12–14]. To investigate the edge states we consider an
armchair boundary along the x direction, with a large N sites in the y
direction, as shown in Fig. (1). A partial Fourier transform is made and
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Fig. 1. Squematics of the upper armchair edge of a honeycomb lattice. The external on-
site potential 𝛿1 is applied at the outermost sites. Here, n is a real-space row index in y
direction perpendicular to the edge. For a large N, we consider the opposite edge with
the same structure and with an on-site potential 𝛿N .

the Hamiltonian given in Eq. (1) in LSWA can be written in the form,

H = −t
∑

k
Ψ†

kMΨk, (2)

where Ψ†
k =

[
Ψ†

k, A,Ψ
†
k, B

]
is a 2N × 2N, 2-component spinor, k is the

Bloch wave number in the x direction and t = JS. The matrix elements
of M are N × N matrices given by,

M11 =
(
1 − 𝛿1

)
T†T +

(
1 − 𝛿N

)
TT† + 𝛿sI + MD,

M12 = −J1I − J2
(
T + T†) ,

M21 = M†
12,

M22 = M11 − 2MD,

(3)

with 𝛿s =
(
1 + 𝛿1 + 𝛿N

)
I and MD = J3

(
TT − T†T†) + J4

(
T† − T

)
the

DMI contribution. Here, T is a displacement matrix as defined in
Ref. [22] and I a N × N identity matrix. We have also introduced
two on-site energies 𝛿1 and 𝛿N at the outermost sites of each bound-
ary, respectively. The coupling terms are: J1 = e-ik, J2 = eik∕2, J3 = iD′,
J4 = 2iD′ cos

(
3k∕2

)
and D′ = D∕J. The numerical diagonalization of the

matrix given by Eq. (2) reveals that the bulk spectra is gapless only if
N = 3m + 1, with m a positive integer [23]. However, to avoid size-
dependent bulk gaps or hybridization between edge states of opposite
edges [8], we consider a large N where the edge states are independent
of the size [24,25].

3. Edge states and boundary conditions

From the explicit form of the matrix elements given in Eq. (3), the
coupled Harper equations can be obtained [26]. If we assume that the
edge states are exponentially decaying from the armchair boundary, we
can consider the following anzats [27,28] for the eigenstates of M in Eq.
(2),

Ψk(n) =

[
𝜓k,A(n)

𝜓k,B(n)

]
= zn

[
𝜙k,A

𝜙k,B

]
, (4)

where
[
𝜙k,A, 𝜙k,B

]t is an eigenvector of M, z is a complex number and
n{= 1,2, 3,…} is a real space lattice index in the y direction, as shown
in Fig. (1). Upon substitution of the anzats in the coupled Harper equa-
tions, the complex number z obey the following polynomial equation,

4∑
𝜇=0

a𝜇(z + z−1)𝜇 = 0, (5)

with coefficients: a0 = 1 − (3 − 𝜀)2 − 4J2
4, a1 = 8J3J4 + J∗1J2 + J∗2J1, a2 =

−4J2
3 + J2

4 + 1, a3 = -2J3J4 and a4 = J2
3. For a given k and energy 𝜀, such

a polynomial always yields four solutions for (z + z−1). Since we require
a decaying wave from the boundary, only the solutions with |z| < 1

are relevant for the description of the edge states at the upper edge
and |z| > 1 for the lower (opposite) edge. The eigenfunction of Eq. (2)
satisfying lim

n→∞
Ψk (n) = 0 may now in general be written as,

𝜓k,l(n) =
4∑
𝜐=1

cvzn
v𝜙l,v, (6)

where the coefficients c𝜐 are determined by the boundary conditions
and 𝜙l,v is the two-component eigenvector (l = A,B) of M. From the
Harper equations provided by the Eq. (3) and Eq. (4), the boundary
conditions are satisfied by,(
1 − 𝛿1

)
𝜓k,A(1) − J2𝜓k,B(0) = 0, (7)

(
1 − 𝛿1

)
𝜓k,B(1) − J∗2𝜓k,A(0) = 0, (8)

J4𝜓k,A(0) − J3𝜓k,A(−1) = 0, (9)

J4𝜓k,B(0) − J3𝜓k,B(−1) = 0. (10)

By Eq. (6), the above relations can be written as a set of equations for
the unknown coefficients cv. The non-trivial solution and the polyno-
mial given by Eq. (5), provide us a complete set of equations for the
edge state energy dispersion and they can be solved numerically. The
same procedure can be followed to obtain the solutions for the opposite
edge.

4. Results and discussions

4.1. Zero DMI

For the system without DMI, the coupling terms involving J3 and
J4 vanish, and the boundary conditions are reduced to the Eqs. (7) and
(8) with a quadratic polynomial in (z + z−1) of Eq. (5). In particular, for
the (uniform) case with 𝛿1 = 𝛿N = 1, the edge and the bulk sites have
the same on-site potential and the boundary conditions provide us with
two bulk solutions with z2 = 1. Therefore, in analogy with graphene
with armchair edges, there are not edge states [7]. However, as shown
in Fig. (2a), in the absence of external on-site potential

(
𝛿1 = 𝛿N = 0

)
,

two new dispersive localized modes are obtained. Located between
(red, continuous line) and below (green, dotted) the bulk bands, such
edge states are well defined along the Brillouin zone and their energy
bands are doubly degenerated due to the fact that there are two edges
in the ribbon. These edge states have not been previously predicted
or observed in magnetic insulators. However, we believe that they are
analogous to the novel edge states recently observed in a photonic hon-
eycomb lattice with armchair edges [18]. Although in Ref. [18] these
edge states may be attributed to the dangling bonds along the bound-
ary sites (the details have been given for zig-zag and bearded but not
for armchair edges), and since these dangling bonds can be viewed as
effective defects along the edges, similar physics is contained in our
model where the effective defects are described by the different on-
site potential at the boundaries. We believe that our approach has the
advantage of simple implementation for various boundary conditions.
In particular, we have obtained expressions for the wavefunctions and
their confinement along the boundary. The latter is given by the pene-
tration length (or width) of the edge state [29] defined as,

𝜉i(k) ≡
√

3
2

[
ln

|||| 1
zi(k)

||||
]−1

, (11)

indicating a decay of the form ∼ e−y∕𝜉i(k). In the above equation, zi is
the i-th decaying factor in the linear combination, Eq. (6). Since we
require two decaying factors to construct the edge state, we have two
penetration lengths as mentioned in Ref. [18]. The penetration lengths
for the edge states with 𝛿1 = 𝛿N = 0 are shown in the Fig. (2b). The
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