Author's Accepted Manuscript

Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride

Hamze Mousavi, Samira Jalilvand, Jamshid Moradi Kurdestany

 PII:
 S0921-4526(16)30392-1

 DOI:
 http://dx.doi.org/10.1016/j.physb.2016.08.049

 Reference:
 PHYSB309618

To appear in: Physica B: Physics of Condensed Matter

Received date:16 June 2016Revised date:28 August 2016Accepted date:29 August 2016

Cite this article as: Hamze Mousavi, Samira Jalilvand and Jamshid Morad Kurdestany, **Pauli magnetic susceptibility of bilayer graphene and hexagona boron-nitride**, *Physica B: Physics of Condensed Matter* http://dx.doi.org/10.1016/j.physb.2016.08.049

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Pauli magnetic susceptibility of bilayer graphene and hexagonal boron-nitride

Hamze Mousavi¹^{*}, Samira Jalilvand¹ and Jamshid Moradi Kurdestany²

¹Department of Physics, Razi University, Kermanshah, Iran

²Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65201, USA

Abstract

We study the contribution of s and p orbitals on the Pauli magnetic susceptibility (PMS) and density of state (DOS) of the following three structures (1) bilayer graphene (2) bilayer boron-nitride (BN) and (3) bilayer graphene-BN within a two-band tightbinding Harrison Hamiltonian and the Green's function technique. It is shown that in all three cases, the contribution of s and p_x or p_y orbitals have no states around the Fermi level, while for bilayer graphene and graphene-BN the total DOS and DOS of p_z orbital appear to be a linear function around this level. We show explicitly that for bilayer BN the contribution of p_z orbital does not have states around the Fermi level, because of ionization energy difference between the boron (B) and nitrogen (N) atoms. We find that the bandwidth of s, p_x or p_y is more extension than case of p_z orbital as a result of the Van-Hove singularities in the DOS. This leads to consideration of the PMS in two, low and high temperature, regions.

Keywords: Bilayer graphene; Boron-nitride; Susceptibility; Green's function; Tight-binding.

^{*}Corresponding author. Tel./fax: +98 83 3427 4556. E-mail: hamze.mousavi@gmail.com (H. Mousavi).

Download English Version:

https://daneshyari.com/en/article/8161724

Download Persian Version:

https://daneshyari.com/article/8161724

Daneshyari.com