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a b s t r a c t

We demonstrate the dynamic effective material parameters and vibration performance of a graded beam.
The structure of the beam was composed of several unit cells with different fill factors. The dispersion
relations and energy band structures of each unit cell were calculated using the finite element method
(FEM). The dynamic effective material parameters in each unit cell of the graded beam were determined
by the dispersion relations and energy band structures. Longitudinal wave propagation was investigated
using a numerical method and FEM. The results show that the graded beam allows asymmetric acoustic
transmission over a wide range of frequencies.

& 2016 Published by Elsevier B.V.

1. Introduction

In the last few decades, phononic crystals have attracted much
attention owing to their unique acoustic properties [1–9]. In par-
ticular, their effective material parameters can be negative [1,2],
anisotropic [3], or dependent on the frequencies of vibration [4,5],
resulting in some unusual phenomena, such as low-frequency
forbidden bands [5,6] and negative refraction [7]. These exotic
effects have been intensely studied and many intriguing devices
have been designed, such as the invisible cloak [3], superlens [7],
and acoustic shield [8]. With recent developments in graded
phononic crystals, the innovative properties of this structure
promise a wide variety of applications, such as a plane lens and
acoustic absorber. By introducing the concept of a gradient-index,
Lin et al. [9] designed a graded phononic crystal to control the
propagation of acoustic waves. The gradient refractive index pro-
file in a gradient-index phononic crystal is obtained by adjusting
the material parameters [9], fill factor [9,10] and lattice constants
[11]. Researchers have developed graded phononic crystals and
investigated the focusing of the Lamb waves [12] and Rayleigh
waves [13], both numerically and experimentally. Using graded
phononic crystals, Yu [14] designed a broadband acoustic absorber.

In parallel, by using a nonlinear material [15,16], an asymmetric
structure [17,18], and a graded structure [19–23], the asymmetric
acoustic transmission effect has been realized. Asymmetric

acoustic transmission is important in many applications, such as
acoustic rectifying devices or sound diodes. Researchers have
proposed two-dimensional prism models consisting of phononic
crystals [19,20] or acoustic metamaterials [21] for unidirectional
transmission. Prism structures can be regarded as spatial gradient
structures. Chen et al. [22] proposed graded grating phononic
crystal slabs that support broad bi-directional asymmetric Lamb
wave transmission. Zhu et al. [23] designed a four-body composite
structure, which consists of two reflectors and two metasurfaces.
The metasurfaces are fabricated by using graded grooves. By
changing the thickness of a graded plate, Krylov et al. [24,25] in-
vestigated the “acoustic black holes” for flexural waves. However,
most of the aforementioned works focus on the properties of wave
propagation in graded phononic crystals or acoustic metamater-
ials. Besides, it is necessary to investigate the relationship between
the properties of wave propagation and effective material para-
meters of graded phononic crystals.

In this work, a gradient fill factor of each unit cell is introduced
into the phononic crystals to obtain graded beam. The dispersion
relations and energy band structures of each unit cell are calcu-
lated using the finite element method (FEM). Then, the dynamic
effective material parameters in each unit cell of the graded beam
are determined using the dispersion relations and energy band
structures. The vibration performance of the graded beam is then
investigated by using a numerical method and FEM. The paper is
organized as follow. In Section 2, the model of the structure is
presented and explained. And the calculation methods of disper-
sion relations and energy band structures based on FEM are de-
scribed. The setup of numerical model of effective materials
parameters is presented. In Section 3, the vibration performance of
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the graded beam is investigated based on the FEM and numerical
method. Finally, conclusions are given in Section 4.

2. Effecive parameters of a graded beam

The model studied is shown in Fig. 1. A graded beam is com-
posed of several unit cells with length a and radius r. Each unit cell
is composed of beam-A (white regions in Fig. 1) with length
a1¼(1�F)a and beam-B (gray regions in Fig. 1) with length a2¼Fa.
Beam-A and beam-B are made of polymethylmethacrylate
(PMMA) and steel, respectively. The material properties of PMMA
are ρPMMA¼1142 kg�m�3, EPMMA¼2 GPa, and sPMMA¼0.389; and
those for steel are ρsteel¼7782 kg m�3, Esteel¼210.6 GPa, and
ssteel¼0.3. By adjusting the fill factor F of beam-B, the gradient
material properties of the beam can be changed.

To obtain the effective material parameters of the graded beam,
each unit cell is treated as a cell of a periodic beam. Thus, the
effective density and elastic modulus of each unit cell can be cal-
culated by using its the energy band structure [26]. The dispersion
relation and energy band structure of each unit cell are calculated
by using the FEM. The periodic boundary conditions are con-
sidered on two sides of a unit cell. The dispersion relations and
eigenmodes are obtained by varying the Bloch wave vector in the
first Brillouin zone and by solving a spectral problem. The eigen-
vectors represent the modal displacement fields. The mechanical
energy can be calculated from the deformation of the structure.

Fig. 2(a) shows the dispersion relations for a longitudinal wave
in eleven periodic beams with the various fill factors. As the fill
factor increases, the dispersion bands of the periodic beams first
fall and then rise along the ΓX orientation. We found that the fill
factor of the lowest dispersion curve is equal to 0.5. In fact, when
the fill factor tends to 0.5, the proportion of two materials in the
periodic beam will approach the same value, and this change
causes a stronger dispersion. Conversely, when the fill factor tends
to 0 or 1, the dispersion curves will rise and approach the dis-
persion curve of the beam of the dominant material. Fig. 2
(b) shows the relationships between the wave vector and me-
chanical energy of each unit cell with various fill factors. It should
be noted that the energy is not only related to the wave vector, but
also to the vibration amplitude. Thus, the vibration amplitude
should be normalized to eliminate the effect of the amplitude on
the energy band structures. The proportion of steel increases with
the fill factor. In addition, the mechanical energy density of steel is
higher than that of PMMA when their vibration amplitudes are
equal. Thus, the energy bands of the periodic beams rise along the
ΓX orientation as the fill factor increases.

We consider each unit beam to be effectively equivalent to a
homogeneous beam with effective density, ρeff, and elastic mod-
ulus, Eeff. This homogeneous beam has the same size as the unit
beam, as shown in Fig. 3. Meanwhile, the dispersion relations and
energy band structures of the homogeneous beam are the same as
those of the unit beam.

For the longitudinal waves propagating in the homogeneous
beam, the equation of motion is given by
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where u denotes the displacement of a structure and S is the cross-
sectional area. The harmonic solution of Eq. (1) is

( ) ( )ω= − ( )u x t A kx t, sin , 2

where A denotes the vibration amplitude of a structure and k and
ω are the wave vector and angular frequency, respectively. Sub-
stituting Eq. (2) into Eq. (1), the dispersion relation can be ex-
pressed as
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The effective density and elastic modulus cannot be uniquely
determined by dispersion relations, as shown in Eq. (3). According
to the Ref. [27], the accompanying energy equation of Eq. (1) is
easily obtained
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The first term, which takes derivative with respect to t, re-
presents the energy density and the second term, which takes
derivative with respect to x, represents the energy flux. Sub-
stituting Eq. (2) into the energy density term in Eq. (4), the energy
density, w, is approximately given by
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Considering the average values of cos2(kx-ωt) and sin2(kx-ωt)
in one period are both equal to one half, we have
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Eq. (6) shows that the energy at each point is equal to the sum
of the kinetic and potential energy at that point. The total energy,
W, of the longitudinal vibration of the beam is calculated using

∫= ( )W wdx 7
a

0

In a mechanical structure without damping, the maximum ki-
netic energy, Tmax, the maximum potential energy, Umax, and the
total energy are equal:

= = ( )W T U 8max max

Substituting Eq. (3) and Eq. (7) into Eq. (8), we obtain the
maximum kinetic and potential energies of a homogeneous beam.
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Eq. (9) shows that the maximum kinetic and potential energies
are functions where the dependent variables are the effective
material parameters, ρeff and Eeff. Thus, the effective material
parameters can be expressed as

Fig. 1. Configuration of the graded beam.
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