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a b s t r a c t

We theoretically investigate the conversion efficiency of spin power to charge power in a normal metal
with spin-orbit coupling based on the Green's function method. The normal metal is connected with
three leads. A spin current injected in one lead can induce a charge current between another two leads.
We find that the conversion efficiency of spin power to charge power is roughly proportional to tSO

4 when
the spin-orbit coupling tSO is weak, suggesting that the efficiency is limited. Moreover, an increase of
temperature may reduce the efficiency. The results may be useful in determining the overall efficiency of
a thermoelectric setup based on the longitudinal spin Seebeck effect.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there has been an intensive interest to develop high-
efficiency thermoelectric materials for potential applications, e.g.,
electric power generation from waste heat and thermal manage-
ment in electronics [1–4]. The conversion efficiency of heat to
power is normally measured by the dimensionless figure of merit
ZT, which is defined as σ λ=ZT S T/2 . Here S is the thermopower (or
charge Seebeck coefficient), s is the electrical conductivity, λ is the
thermal conductivity, and T is the temperature. From this defini-
tion, one can see that improving the performance of thermo-
electric materials requires the simultaneous optimization of three
mutually counter-indicated properties, namely, S, s, and λ, ren-
dering the improvement not easy. Over the past decades, only
modest improvements have been made by ways like nanos-
tructuring to reduce the phonon conductivity [5–7], or band en-
gineering to optimize electronic properties [8,9].

Very recently, a novel approach based on the spin Seebeck ef-
fect (SSE) in magnetic materials has been proposed [10–14]. In this
approach, electrical transport and heat transport occur in different
regions of the system, thus providing the opportunity to optimize
thermal properties and electronic properties of the system sepa-
rately [14]. In the longitudinal configuration consisting of a fer-
romagnetic-insulator (FI) and a normal-metal (NM) [15,16], the

SSE is in particular promising. In such a configuration, the power
(or a voltage) generation can be viewed as a two-step process.
First, a spin current is pumped to the NM by a temperature gra-
dient between the FI and the NM. Then, the spin current is con-
verted to a perpendicular charge current (or the voltage) via the
inverse spin Hall effect (ISHE) [17]. Although many works have
been devoted to the study of heat/spin transport properties in this
configuration [18–24], to our knowledge the thermoelectric effi-
ciency is less discussed [25–27].

In this paper, we consider the conversion efficiency of spin
current to charge current in a normal metal with spin-orbit cou-
pling, that is, the conversion efficiency of spin power (corre-
sponding to the spin current) to charge power. This efficiency is
relevant to the second process of the longitudinal SSE (LSSE), and
may be useful in determining the overall efficiency of heat current
to charge power. The efficiency is estimated based on a tight-
binding model with spin-orbit coupling. We find that the effi-
ciency for this system is on the order of × −0.2 10 4 in the weak
regime of spin-orbit coupling. The efficiency can be enhanced by
improving the spin-orbit coupling; however, an increase of tem-
perature may reduce the efficiency.

2. Model and method

We consider a two-dimensional system with three ideal metal
leads, as illustrated in Fig. 1. The Hamiltonian of the system and
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the leads can be written as
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where t (units of energy) denotes the nearest-neighbor hopping,
and tSO is the Rashba-type spin-orbit coupling. δx (δy) is the unit
vector along the x (y) direction. Note that the spin-orbit coupling
in the leads is chosen to zero. Although we have adopted a simple
model here, we believe that the results below can also be extended
to realistic models, where one may resort to first-principles cal-
culations [28]. We expect that the results for realistic models may
not change drastically.

At an FI/NM interface, a spin current carried by magnons can be
injected to the NM. To mimic this effect, we adopt a metal lead
(lead 1) and assume that a spin bias (spin accumulation) exists
between this lead and the central region. Since there is no charge
current across the FI/NM interface, we further assume the charge
current from this lead is zero. Due to the spin accumulation at lead
1, a spin current is injected into the central system. Then it will
induce a longitudinal charge current between leads 2 and 3. We
shall consider the conversion efficiency of spin current to charge
current in the following. To this end, we set the chemical potential
at lead 1 to μ μ χ μ χ= + Δ ( = ± )σ σ ↑ ↓/2 1s1 F 1 , , where μF is the chemical
potential (Fermi energy) at equilibrium and μΔ s1 is a spin bias.
Note that there is no charge bias at lead 1 ( μΔ = 01 ). At leads 2 and
3, there is only charge bias, that is, μ μ μ= + Δσ2,3 F 2,3. The heat
current, spin current, and charge current flowing out from lead i
are, respectively,
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Here (ϵ) = [ + ]σ
μ(ϵ− ) −σf e 1i

k T/ 1i B is the Fermi-Dirac distribution
function with T being the temperature. The electron transmission
can be calculated from the nonequilibrium Green's functions

[29,30]; for example, Γ Γ′ = ( ′ )σ σ σ σ G GTrj i j
r

i
a

, is the probability for a
spin-s electron incident in lead i to be transmitted to lead j with
spin-σ′. Here Gr a, is the retarded (advanced) Green's function with
the leads being taken into account through self-energies Σ σj , and

Γ σj is given by Γ Σ Σ= ( − )σ σ σ
†ij j j . The transmission satisfies the re-

lations, ′ = ′σ σ σ σ¯ ¯ j i i j, , (time-reversal symmetry) and ′ = ′σ σ σ σ¯ ¯ 2 ,1 3 ,1

[31,32].
From Eq. (2) it follows that
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which indicates that the spin power ( = μΔ
P Is s1

s1 ) corresponding to
spin current is partly converted to charge power
( = − ∑ μ

=
Δ

P Ic i ic e2,3
i ), and is partly converted to heat flowing into the

three leads. The conversion efficiency of spin power to charge
power is then given by η = P P/c s. Note that in Eq. (3) we have as-
sumed =I 0c1 , i.e.,
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3. Results and discussion

We first consider the case of the low temperature limit
( μ⪡k TB F). In the linear regime (or low bias limit), Eq. (4) reduces to
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fromwhich we obtain μ μΔ = − Δ3 2. If we consider leads 2 and 3 as
two voltage probes (closed boundary conditions), there is no
charge current between the central region and lead 2 (or 3). Then
we have =I 0c2 , i.e.,
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from which we can obtain the ratio between μ μΔ − Δ2 3 and the
spin bias,
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which measures the ability of the spin bias to induce the charge
bias. Here we have used the abbreviation = ∑

′ ′σσ σ σ ij i j, .
Fig. 2(a) shows the ratio μ μ μ(Δ − Δ ) Δ/ s2 3 1 as a function of the

Fermi energy μF. The ratio is an odd function of the Fermi energy
due to the particle-hole symmetry. That is, the carriers at μ > 0F
( μ < 0F ) are electronlike (holelike), and these carriers make op-
posite contribution to the charge current. As the Fermi energy
varies, the ratio oscillates drastically. This is largely due to the
carrier reflection at the interface between the leads ( =t 0SO ) and
the central region with spin-orbit coupling, and also due to the
precession of the electron spin [32]. Apart from the oscillation, we
also note that the ratio increases slightly with increasing μ| |F . This
is partially because the transmission + 212 32 [cf. Eq. (7)] drops
as μ| |F increases, as reflected in the inset of Fig. 2(a). The behavior
of + 212 32 reflects the fact that around μ ∼ 0F there are more
conducting channels. Further, as μF changes, the ratio takes several
peak values, one of which is located at μ = t0.24F , and in the fol-
lowing we will focus on properties at this Fermi energy.

Fig. 1. Schematic of a three-terminal junction. The spin-orbit coupling only exists
in the central region with a size of ×L L . A spin current is injected from lead 1 to
induce a longitudinal charge current between leads 2 and 3.

Y. Yan et al. / Physica B 502 (2016) 166–169 167



Download English Version:

https://daneshyari.com/en/article/8161741

Download Persian Version:

https://daneshyari.com/article/8161741

Daneshyari.com

https://daneshyari.com/en/article/8161741
https://daneshyari.com/article/8161741
https://daneshyari.com

