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a b s t r a c t

Recent researches highlight the additional anisotropic crystallographic axis within the superconducting
plane of high temperature superconductors (HTS), demonstrating the superconducting anisotropy of HTS
is better understood in the biaxial frame than the previous uniaxial coordinates within the super-
conducting layer. To quantitatively evaluate the anisotropy of flux pinning and critical current density in
HTS, we extend the scaling rule for single-vortex collective pinning in uniaxial superconductors to ac-
count for flux-bundle collective pinning in biaxial superconductors. The scaling results show that in a
system of random uncorrected point defects, the field dependence of the critical current density is de-
scribed by a unified function with the scaled magnetic field of the isotropic superconductor. The obtained
angular dependence of the critical current density depicts the main features of experimental observa-
tions, considering possible corrections due to the strong-pinning interaction.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-temperature superconductors (HTS) show an extensive
application prospect in large-power magnets and cables [1,2], due
to its relatively high critical temperature and critical current
density. How to improve the vortex-pinning properties for raising
the critical current density and upper critical field, is a huge
challenge in the area of high power application. An outstanding
feature of HTS is the anisotropy of superconducting condensate [3–
5], which manifests at the inequality of the microscopic super-
conductivity parameters or the upper critical field [6] along the
crystallographic axes. For example, in single-crystal NdFeAsO1�xFx,
the ratio of zero-temperature coherence lengths perpendicular to
the FeAs layers and in the layers is �4 [7]. In (Ba,K)Fe2As2 and Nd
(F,O)FeAs the anisotropy factors are �2.5 and 7.5 [8], respectively.

The field and angular dependences of the critical current den-
sity Jc shed light on the anisotropy. Multiple techniques have been
used to measure Jc variation with the magnetic field direction in
various superconducting samples [9–14]. The critical current
density is fundamentally caused by the interaction of the flux
vortices and defects. [15] To this end, the anisotropic Jc depends
not only on the anisotropy of superconducting condensate itself

but on the defective nature. In high-temperature cuprate super-
conductors, columnar and planar defects exhibit a notably differ-
ent field dependence of Jc [13,16–18]. Furthermore, the anisotropy
in Jc depends on the strength of the pinning interaction. From the
observations on the behaviors of Jc anisotropy, a strong-pinning
interaction is demonstrated in the hole-doped Ba0.6K0.4Fe2As2
single crystal [14], whereas there is a weak-collective-pinning in-
teraction after introducing point pinning defects. In coated con-
ductors containing BaZrO3 (BZO) nanorod, the lattice mismatch
between BZO and the matrix induces the weak uncorrelated pin-
ning interaction (point pinning defects) [19]. This pinning raises
the critical current density for the whole field-angle range,
broadens the ab-plane peak range and reduces the critical current
density anisotropy. Xu et al. [20] investigate the field and tem-
perature dependences of the critical current density in two types
of YBa2Cu3Ox thin films with different pinning landscapes, de-
monstrating that the insulating precipitates with strain mismatch
(point defect pinning) render a significantly reduced effective
Ginzburg–Landau (G–L) anisotropy parameter and a relatively high
bulk flux pinning force density.

A traditional way to incorporate the anisotropy into the phe-
nomenological description of superconductivity is to introduce an
anisotropic effective-mass tensor into the Ginzburg–Landau (GL)
equations [21]. One then has to repeat all the calculations that
have been done for the isotropic case before. A more elegant
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approach is the scaling rule [21,22], which scales the anisotropic
problem to a corresponding isotropic one at the initial level of GL
free energy. Reusing the scaling rule, the isotropic results are then
simply generalized to the anisotropic ones. Despite its effective-
ness, the traditional scaling rules are limited to treat the aniso-
tropic uniaxial superconductors. On the other hand, single-vortex
pinning receives the most concerns in the scaling rules, without
considering the magnetic field dependence. Here, inspired by most
recent findings on the biaxial anisotropy [23–27] (axes a, b and c)
and on the field dependence of the critical current density [13,28–
33], we extend the scaling rules to account for the anisotropic
biaxial superconductors exposed to magnetic field with arbitrary
direction and magnitude. Through this paper, a simple theory is
established to unfold the complex physics in the anisotropy of the
most concerned HTS. In the next section we first give the proce-
dure for deducing the scaling rules for anisotropic biaxial super-
conductors within the single-vortex pinning regime, in light of
those for uniaxial superconductor [21].

2. Scaling rules for anisotropic biaxial superconductors

2.1. Single-vortex pinning regime

The GL free-energy functional for the Gibbs free energy per unit
volume is [21,34]
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where Ψ ( )r is the order parameter, Aj is the magnetic vector po-
tential, = ∇ ×B A is the local magnetic induction strength, and H
is the magnetic field. ( )f 0n is the free energy of the normal state at
zero magnetic field, μB /22

0 is magnetic field energy and ( − ⋅ )B H is
the diamagnetic energy. The phenomenological GL parameter
α α( ) = − ( )( − )T T T0 1 / c changes sign at the critical temperature Tc ,
whereas β is taken to be a positive constant with respect to
temperature. ( > )e 0 is the elementary charge. ( = )m j a b c, ,j de-
note the effective masses along the principal axes of the crystal.

For simplicity and because HTS are within high accuracy biaxial
(axes ∥c , ∥a and ∥b) materials, we denote the mass anisotropy ratio
by ε = m m/ab c

2 and ζ = m m/a b
2 in which =m m mab a b . In addition,

we define λ λ λ=ab a b and ξ ξ ξ=ab a b . The definitions are appro-
priate for anisotropic biaxial superconductors [24]. Here, the su-
perconducting anisotropy comes from the difference of effective
masses along crystal axes, as defined in the anisotropic GL theory
[21]. In this sense, the anisotropy ratio of the effective mass is
equivalent to the anisotropy ratio of the coherence length or
London penetration depth as introduced in Refs. [24,30]. However,
the anisotropic GL theory and the “mass anisotropy law” break
down in the weakly coupled two-band superconductors such as
MgB2 [35]. The magnetic field H encloses an angle θ with the z
axis, and its projection in the xy plane encloses an angle φ with
the x axis (see Fig. 1(a)).

The anisotropy enters in the GL free energy (1) only through
the gauge-invariant gradient term, which becomes isotropic if we
choose the following scales of the coordinate axes and vector
potential,
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where we denote a quantity q in the scaled isotropic system by q̃.

The magnetic flux density = ∇ ×B A is then scaled as:

ζ ε ζ ε= = = ( )− − −B B B B B B, , 3x x y y z z
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Applying Eq. (3) in the free energy expression (1), one finds
that the last two terms representing the magnetic energy are
transformed into
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Note that, the anisotropy is reintroduced in fm, although it
vanishes in the gradient term. In general, it is not possible to
render both terms in the Gibbs energy isotropic simultaneously. If
the superconductor is strongly type II (GL parameter κ > > 1) or if
the magnetic field are large enough [21], the magnetic field is
nearly uniform on the elementary length scales, and we can adopt
a mean-field decoupling scheme, in which we first minimize the
magnetic-field energy fm with respect to

∼
B and then insert the

resulting uniform field back into the free energy. Minimizing fm
(Eq. (4)) with respect to Bx, By and Bz , the applied external
magnetic field is scaled in the isotropic system as,
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Combing this result with Eq. (3), we find the constitutive re-
lation μ=B H0 in the anisotropic system. Thus, with the aid of

θ φ=B B sin cosx , θ φ=B B sin siny and θ=B B cosz , in the re-
scaled isotropic system the magnetic field is related to the original
magnetic field as

ε= ( )
∼

θφB B, 6

where ε ε θ φ ε θ ζ φ ζ φ θ= ( ) = ( + ) +θφ
−, sin cos sin cos2 2 2 2 2 1 2 2 . In

uniaxial superconductors with ζ = 1, εθφ
2 is reduced to

ε ε θ θ= +θ sin cos2 2 2 2 and thus ε=
∼

θB B, which coincides with the
appropriate result in Ref. [21]. In Fig. 2, we plot the angular de-
pendence of B, indicating that the degree of freedom increases to
two in biaxial superconductors, and varying the two anisotropy
parameters renders nonlinear and gradual changes in the profiles
of θ φ( )B , .

Consider a “longitudinal vector” θ φ θ φ= (ll sin cos , sin sin ,l l

θ)cos directed along the magnetic field H (see Fig. 3). Using Eq. (2)
we obtain
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Consider a “transverse vector” = ( )l l ll , ,t tx ty tz with

θ φ ψ φ ψ^ = −l cos cos cos sin sintx t t ,

θ φ ψ φ ψ^ = +l cos sin cos cos sinty t t and θ ψ^ = −l sin costz t , which
lies in the plane perpendicular to the vortex line. The direction of lt

in this plane is defined by an angle ψt (Fig. 3). We have the fol-
lowing scaling rules for lt ,
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If we denote the radius of the vortex core by rc , the scaled r̃c in

the isotropic system is then ζ ζ ε˜ = ( ^ ^ ^ )− −r l l lr , ,c c tx ty tz
1/2 1/2 1 . Since r̃c is

not perpendicular to the vortex line direction l̃l, ξab is given by the
projection ⊥rc of r̃c on the plane perpendicular to l̃l,
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