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a b s t r a c t

We present a theoretical study of the electron distribution, i.e., two-dimensional electron gas (2DEG) in
polar heterojunctions (HJs) within a realistic model. The 2DEG is confined along the growth direction by
a triangular quantum well with a finite potential barrier and a bent band figured by all confinement
sources. Therein, interface polarization charges take a double role: they induce a confining potential and,
furthermore, they can make some change in other confinements, e.g., in the Hartree potential from io-
nized impurities and 2DEG. Confinement by positive interface polarization charges is necessary for the
ground state of 2DEG existing at a high sheet density. The 2DEG bulk density is found to be increased in
the barrier, so that the scattering occurring in this layer (from interface polarization charges and alloy
disorder) becomes paramount in a polar modulation-doped HJ.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recently, electronic transport and intersubband optical transi-
tion in polar heterostructures (HSs), such as gallium nitride (GaN)
(or zinc oxide (ZnO)), and their compounds have been intensively
investigated [1,2]. These properties are characteristic of the quality
and performance of electronic and optical devices [3]. The quoted
semiconductors possess unique features that make them im-
portant to fabricate electronic and optical devices in view of their
promising potential for high-voltage, high-power, and high-tem-
perature microwave applications.

The electronic transport in a HS is characterized by a high
mobility of two-dimensional electron gas (2DEG) in the sample,
and its optical absorption by a narrow spectral linewidth. Both
properties in question are determined by various scattering pro-
cesses taking place with 2DEG. The effect of a scattering process in
the lateral plane is determined by its mechanism, but this also
depends on the electron distribution along the growth direction
(quantization direction). Thus, the effect of an electron scattering
process in the lateral plane depends on the envelope function, i.e.,
on confinement sources.

As is well known [1,2], polarization is an important property of
a nitride and oxide-based HS. The HS possesses a very high (areal)

density of polarization charges bound on the interface
(s∼1013 cm�2). For formation of 2DEG in a polar HS, interface
polarization charges take a double role: they are a source to supply
carriers (electrons) into the sample, but they also are a source to
confine the carriers along the growth direction. It is worth noting
that for formation of 2DEG in a modulation-doped HS, ionized
impurities take such a double role as well [3,4].

Therefore, the aim of this paper is to present a theoretical study
of the electron distribution (2DEG) in a polar modulation-doped
HS, where the above double role of both interface polarization
charges and ionized impurities is reasonably taken into account.
Especially, we want to compare the role of the interface polar-
ization charges and the ionized impurities which has not be done
so far.

For simple illustration, we deal with a two-layer HS, i.e., single
heterojunction (HJ) based on GaN. In Section 2, the 2DEG in a HJ is
assumed to occupy the ground subband. The corresponding elec-
tron state is approximately described by a variational wave func-
tion in a triangular quantum well (QW). Within this realistic
model, the QW has a finite potential barrier and a bent band.

In Section 3, parameters figuring the variational wave function
are determined for a polar modulation-doped HJ by all confining
potentials, especially from interface polarization charges and io-
nized impurities. Numerical results illustrating the electron dis-
tribution in HJ are also presented in Section 3. Lastly, a summary is
given in Section 4.
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2. Theory

2.1. Variational wave function for HJ of finite potential barrier

We are now dealing with wurtzite III-nitride-based HJs, e.g., an
AlGaN/GaN sample, which is composed of an AlGaN layer grown
on a GaN layer. The system is featured with the z-axis along and
opposite to the growth direction [0001], and z¼0 being the in-
terface plane between the GaN channel z 0( > ) and the AlGaN
barrier z 0( < ). It is assumed that the channel layer (large thick-
ness) is relaxed, while the barrier one (small thickness) is under
tensile strain and modulation-doped.

At low temperature, the 2DEG is assumed to primarily occupy
the lowest subband. It was shown [4–6] that in the realistic model
of triangular QWs with a finite potential barrier, the electron state
may be well described by a Fang–Howard wave function modified
by Ando [5]:
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Here, κ and k are half the wave numbers in the barrier and channel
layers, respectively. A, B, and c are dimensionless parameters given
in terms of k and κ through the boundary and normalization
conditions, as follows [4,6]:
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The wave function of the lowest subband (its wave vectors k
and κ) is to minimize the total energy per electron, which is fixed
by the Hamiltonian

H T V z , 3tot= + ( ) ( )

where T is the kinetic energy, and V ztot ( ) is the overall confining
potential.

2.2. Confining potentials in a polar modulation-doped HS

Carrier confinement in a polar modulation-doped HS is de-
termined by all confining sources located along the growth di-
rection (z-axis): potential barrier, interface polarization charges,
and Hartree potential induced by ionized impurities and 2DEG:

V z V z V z V z . 4tot b H( ) = ( ) + ( ) + ( ) ( )σ

We are to specify the individual confining potentials in Eq. (4).
First, for the potential barrier of a finite height V0 located at the
interface plane z¼0, it holds

V z V z , 5b 0 θ( ) = ( − ) ( )

with zθ ( ) as a unity step function. The potential barrier height is
fixed by the conduction band offset between the AlGaN and GaN
layers: V E x0 c= Δ ( ), with x as the alloy (Al) content in the AlGaN
barrier.

It is well known [7–10] that due to piezoelectric and sponta-
neous polarizations in a nitride-based strained HS there exist po-
sitive polarization charges bound on the interface. These charges
create a uniform normal electric field with the potential given by
[11]
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with s as their total density. Here /2a b cε ε ε= ( + ) is the average
value of the dielectric constants of the barrier bε( ) and channel cε( ).

Next, we calculate the Hartree potential induced by the ionized
donors and 2DEG in the HS. This is determined according to
Poisson's equation [6,12]

⎡⎣ ⎤⎦d
dz

V z
e

N z n z
4

,
7

2

2 H

2

a
I

π
ε

( ) = ( ) − ( )
( )

where N zI ( ) is the bulk density of donors along the growth di-
rection, and n(z) the one of electrons.

Hereafter, we are concerned with such samples that are mod-
ulation-doped in the barrier [13–15]:
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where z Ls s= and z L Ld s d= + , with Ls and Ld as the thicknesses of
the spacer and doping layers, respectively.

The bulk density of electrons along the z-axis is determined by
the envelope wave function in Eq. (1):

n z n z , 9s
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with ns as their sheet density.
We solve the Poisson equation for the Hartree potential V zH ( )

induced by the above distributions of the donors and 2DEG in
combination with the boundary conditions at z = ± ∞. For a non-
polar HS, the subsystem composed of the donors and the 2DEG is
neutral, so its electric field is vanishing at z = ± ∞ [4,6,16]:

V z/ 0. 10H∂ ∂ ( ± ∞) = ( )

However, in a polar HS the 2DEG originates not only from donors,
but also from polarization charges, the neutrality condition is not
claimed on the donor-2DEG subsystem. Hence, the boundary
condition at z = − ∞ must be different, given as follows [12]:

V z V E/ 0 and , 11H H I∂ ∂ ( − ∞) = ( − ∞) = ( )

with EI as the binding energy of an ionized donor.
As a result, the Hartree potential may be represented in the

form

V V V . 12H I s= + ( )

Here the first term is the potential due to remote donors, de-
termined by the doping profile, viz., the donor sheet density
n N LI I d( = ) and the thicknesses of the doping and spacer layers,
given by

⎧
⎨⎪

⎩⎪
V z E

e n
z z

z z L z z z

z z z

4
0 for ,

/2 for ,

/2 elsewhere. 13

I I

2
I

a

d

d
2

d d s

d s

π
ε

( ) = +
< −

( + ) − < < −
+ ( + ) ( )

The second term is the potential due to 2DEG, determined by
the electron sheet density ns and its z-axis distribution, i.e., the
electron wave function, given by

⎧⎨⎩V z
e n f z z

g z z f g z
4 for 0,

0 0 for 0. 14
s

2
s

a

π
ε

( ) = −
( ) <
( ) + + ( ) − ( ) > ( )

The auxiliary functions in Eq. (14) are defined in terms of the
variational parameters entering Eq. (1), as follows:
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