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a b s t r a c t

The Mn66Ga34 alloy at this particular composition is known to be zero alloy in which the linear com-
bination of the two neutron scattering lengths weighted by the atomic compositions vanish. Thus for this
specific concentration, the effect of the partial structure factors SNN and SNC is cancelled by a weighted
term, which value is zero. Then the measured total structure factor S(q) gives directly the concentration–
concentration structure factor SCC(q). We present here the first experimental results of neutron diffrac-
tion on the Mn66Ga34 “null matrix alloy” at 1050 °C. The main peak of the experimental SCC(q) gives a
strong evidence of a hetero-atomic chemical order in this coordinated alloy. This order also appears in
real space radial distribution function which is calculated by the Fourier transform of the structure factor.
The degree of hetero-coordination is discussed together with other manganese-polyvalent alloys.
However manganese also shows abnormal magnetic scattering in the alloy structure factor which must
be corrected. This correction gives an experimental information on the mean effective spin of manganese
in this liquid alloy. We present the first critical theoretical calculations of the magnetic correction factor
in Mn–Ga zero-alloy based on our accurate experimental measurements of SCC(q).

& 2015 Published by Elsevier B.V.

1. Introduction

The study of manganese based alloys presents a great interest,
because Mn is Polyvalent transition metal which has the Fermi
energy in the d-band. This may lead to complex alloy energy band
corresponding to surprising properties such as the sign of ther-
moelectric power. Such transition metal presents magnetic prop-
erties due to the unpaired electron spin in the d-band. The mag-
netism can be modified when mixed with a polyvalent metal such
as Ga bringing more electrons in the d-band. From the experi-
mental point of view, manganese is the less well known than other
transition metals. It has the lowest melting point of all transition
metals which makes measurements at the liquid state are possible.
Manganese neutron scattering length is negative and it permits to
access the chemical order and enhances the ordering potential.
Manganese presents also to a magnetic scattering during the
neutron diffraction experiments, which are considered as a para-
site effect, which provides complementary information on liquid

alloy magnetism.
In the Mn–Ga binary system, there are many intermetallic

compounds and especially some of them with ordered fct struc-
tures are known to exhibit a ferromagnetic properties with high
coercivity [1,2]. Nowadays, the study of (Mn–Ga)-based ternary
alloy is extremely important because of the strong ferromagnetic
ternary alloy properties, such as Ni2MnGa [3,4], Mn2NiGa [5] and
Fe2MnGa [6]. These alloys are showing thermoelastic–martensitic
transformation which have been receiving much attention as
promising candidates for magnetic refrigerant materials using the
magnetocaloric effect and for high temperatures magnetic shape
memory for new class of magnetic actuators and sensor materials
which uses magnetic field-induced strain.

Liquid metal can be mixed in all proportions (it is impossible
for solid alloy). Consequently, it is possible to realize specific
composition such that corresponding to that of the zero alloy and
unreachable for solid alloy. We measured the neutron scattering
length (NSL) of manganese and gallium as well as the total
structure factor S(q) at a gallium concentration, c2¼34.38 at%,
where manganese concentration, c1¼1�c2. According to Bhatia–
Thornton [7] statistical mechanical approach S(q) is directly pro-
portional to the number–number, number-concentration and
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concentration–concentration partial structure factors SNN(q), SNC(q)
and SCC(q), respectively, with complicated matrix relation, but for
particular composition the so called "null matrix composition", Ji-
Chen et al. [8], the simplified relation holds:

S q
S q

c c 1
CC

1 2
( ) = ( )

( )

which has also been used by Ruppersberg et al. [9] for the Li–
Na alloy. In the Mn–Ga alloy, the zero alloy composition is found to
be 66 at% Mn and 34 at% Ga.

In the present work, we measured the structure factor of
Mn66Ga34 at 1050 °C on the two axis spectrometer 7C2 built on the
hot source of the LLB1's Orphée reactor at Saclay. In Section 2, we
present the relations between the alloy total structure factor and
the partial structure factors and the relations between partial
structure factors Sij(q) and partial pair correlation functions gij(r).
We deduce pertinent functions like the Radial concentration Cor-
relation Function (RCF) [10] and the degree of hetero-coordination
on the first neighbours shell given by the Warren chemical short-
range order (CSRO) parameter [11]. The experimental set-up, the
standard corrections and the manganese magnetic scattering
correction method are described in Section 3. In Section 4, the
experimental results are presented and discussed.

2. Theoretical formalism

The total structure factor S(q) of an alloy is related to three sets
of partial structure factors Sij(q) by Ashcroft–Langreth [12], by
Faber–Ziman [13] aij(q) and the Bhatia–Thornton [7] partial
structure factors, SNN(q), SNC(q) and SCC(q).

These relations are given in Waseda's book [14]. In the present
work, we present the link between these two sets of partial
structure factors and facilitate the use of these formalisms. The
total structure factor S(q) is expressed as a function of the Faber–
Ziman partial structure factors aij(q), with i, j ¼1, 2:
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where b1, b2 are the neutron scattering lengths of each metal. The
partial structure factors aij(q) are connected to the partial pair
correlation functions gij(r) via the standard statistical mechanics
relation:
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where 0ρ is the average number density. Here, q is wave vector or
the so called the Fourier space coordinate. The total structure
factor is also related to the Bhatia–Thornton partial structure fac-
tors SNN(q), SNC(q) and SCC(q) by:

S q

c b c b S q c b c b b b S q

b b S q
c b c b

2

.

4

NN NC

CC

1 1 2 2
2

1 1 2 2 1 2

1 2
2

1 1
2

2 2
2( ) =

( + ) ( ) + ( + )( − ) ( )

+ ( − ) ( )
+

( )

When the quantity (c1b1þc2b2) is set equals to zero, it can be
shown that S(q)¼SCC(q)/(c1c2). The difference between the struc-
ture factor SCC(q) and the product c1c2 is considered the measure of
the nature of the chemical order, homo or hetero-coordination. It
can be written in terms of the Faber Ziman partial structure fac-
tors:
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In inverse Fourier transform of S qCC ( ) is simply given as:
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The quantity g11(r)þg22(r)�2g12(r) is linked to the difference
between the homo-coordination, characterized by g11(r)þg22(r),
and the hetero-coordination, characterized by 2g12(r) indicates the
nature of the chemical order, in the first nearest neighbours shell.

On the other hand, Ruppersberg and Egger [10] introduced the
Radial concentration Correlation Function "RCF" defined as:
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The quantity rccρ ( )) can be expressed in terms of partial radial
densities rijρ ( ) [10] as:
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Where r c g r .ij j ij0ρ ρ( ) = ( ) If we use the simplest model pair po-
tential, the hard sphere model characterized with hard sphere
diameters ijσ ,
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and assuming nearly equal hard sphere diameters
11 22 12σ σ σ≅ ≅ , then SNC(q) strictly vanishes and the arrangement of
atoms of species 1 and atoms of species 2 around an atom 1 (given
by r r11 12ρ ρ( ( ) + ( )) is the same as around an atom 2 (given by

r r22 21ρ ρ( ( ) + ( )). Then we have:
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with average density r r r r r11 12 22 21ρ ρ ρ ρ ρ¯ ( ) = ( ) + ( ) = ( ) + ( ). For
a real systemwith weak attractive potentials, one can consider this
equation as a first approximation. The quantity rccρ ( ) vanishes for a
random distribution because we have r c r21 1ρ ρ( ) = ¯ ( ) and has a
negative sign for a hetero-coordinated distribution with

r c r21 1ρ ρ( ) > ¯ ( ).
By integrating the RCF function in the real space, it may be

possible to calculate the Warren [11] short-range order (WSRO)
parameter Pα via the relation,
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where Zp is in the atoms number of species 1 or 2 in the pth shell.1 Laboratoire commun CEA CNRS.
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