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a b s t r a c t

The second-order nonlinear optical susceptibility ; ,2
3 1 2χ ω ω ω( − )( ) corresponding to three-wave mixing

of coherent radiation of the form 3 1 2ω ω ω= − is calculated for epitaxial graphene on a SiC substrate
inducing the sublattice (inversion) asymmetry of the graphene and opening up a gap of about 0.26 eV in
its π-electron-energy spectrum. The analytical treatment of the 2χ ( ) is based on the tight-binding ap-
proximation for π electrons and the original Genkin–Mednis nonlinear-conductivity-theory formalism
including mixed intra- and interband terms. It is found that throughout the transparency region of the
graphene, the absolute magnitude of the 2χ ( ) may be as large as 10�5 esu, which opens up new op-
portunities to generate terahertz (THz) coherent output from the graphene excited by two collinear mid-
infrared ω1 and ω2 laser beams normally incident on its surface. The output power density produced at
the difference frequency 1 2ω ω− of 10 THz is estimated to be 0.1 μW/cm2 for 10 MW/cm2 pump peak
intensities, and conditions are discussed under which a few orders of magnitude enhancement of the
output power could be achieved in future experiments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Among many interesting properties of graphene (a single
atomic layer of graphite), the unusually large nonlinear optical
(NLO) response has received much attention recently, and several
excellent reviews of the state-of-the-art of this subject are avail-
able in the literature at present [1–3]. However, aside from a
theoretical study of the NLO excitation of surface plasmons of
definite wave vector in electron-doped graphene [4], no one seems
to have explored the feasibility of a new way to examine the
subject. We have in mind difference-frequency generation (DFG), a
second-order (three-wave mixing) coherent process which takes
place when a material without a center of inversion is subjected to
two optical pump fields of frequencies ω1 and ω2, combined to
produce a third field of frequency 3 1 2ω ω ω= − [5,6]. Such a pro-
cess is described in terms of a third-rank NLO susceptibility tensor

; ,2
3 1 2χ ω ω ω( − )αβγ

( ) , where Greek subscripts refer to the Cartesian
space directions x, y, and z. Due to centrosymmetric honeycomb
lattice structure of pristine graphene, which is composed of two
equivalent interpenetrating triangular sublattices, all the tensor
elements 2χαβγ

( ) for this monolayer should vanish in the electric-di-

pole (local) limit. Therefore, the nonvanishing electric-dipole-

induced DFG from graphene can be acquired only through break-
ing its (the graphene) sublattice (inversion) symmetry in some or
other way. In particular, such a symmetry breaking occurs in
graphene grown by C-face epitaxy on SiC [7]. The underlying lat-
tice of SiC, more precisely, a buffer layer between graphene and
the SiC substrate, induces the electrostatic potential asymmetry of
the two above-mentioned sublattices of graphene, generating a
gap of about 0.26 eV at the Dirac points (two inequivalent corners
K and K′) of the Brillouin zone of the two-dimensional (2D) hex-
agonal lattice structure. This gives rise to a finite second-order
optical nonlinearity of the overlying graphene, which has been
studied in our previous work [8,9] focused on second-harmonic
generation (SHG) and optical rectification.

In this paper, we further develop the above concept by showing
how the strong second-order optical nonlinearity of graphene on
SiC, which we will refer to as “gapped graphene” hereafter, man-
ifests itself in the rise of a difference-frequency output in the
presence of two normally incident pump laser beams at fre-
quencies ω1 and ω2. We also discuss the possibility to generate
coherent THz radiation in such a way, which, if realized, may be-
come a new, very interesting application of graphene.

The rest of the paper is organized as follows. In Section 2, we
describe the band structure model used in our study. In Section 3,
an analytical expression for the DFG susceptibility of gapped gra-
phene is obtained. This is followed by some numerical calculation
and a discussion of the results (Section 4). Finally, a conclusion is
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drawn in Section 5.

2. Model

To describe the electronic structure of graphene in our study,
we employ the tight-binding model, which has become the ex-
planatory point of reference in almost all discussions of graphene,
both experimental and theoretical (for reviews, see, e.g., [10–12]).
Within the framework of the model, the perturbation caused by
the graphene–substrate interaction breaking the sublattice (in-
version) symmetry of pristine graphene can be expressed in terms
of a “staggered” electrostatic potential Δ that has the opposite sign
on the two sublattices [13]. This leads to the following two-band
solution for the π-electron energies Esk in a basis of Bloch orbitals

U ir r krexps sk kΨ ( ) = ( ) ( ) near the K point:

E h , 1sk k
2 2Δ= ± + | | ( )

where the plus and minus signs refer to the conduction (c) and
valence (v) bands, respectively, s c, v( = ) is the band index, k is the
2D electron wave vector measured relative to the K point [the
endpoint of the vector aK 2 /3 1/ 3 , 1π= ( )( )], and

⎡⎣ ⎤⎦h v a k a k a i/ /2 exp 2 /3 2k 0
2( ) π= − (ℏ ) + ( ) ( )+ −

with k k ikx y= ±± . Here, the x-axis is taken along the zigzag di-
rection on the graphene plane (xy plane), and v0 is the model
parameter linked to the transfer integral t0 between π orbitals of
two nearest-neighboring atoms on the plane by the following
relation: v t a3 /20 0ℏ = , where a is the distance between those
atoms.

Eq. (1) explicitly takes into account the trigonal warping of the
π-electron-energy bands in graphene, originating from the second
term in the square brackets on the right-hand side of Eq. (2). As
shown in [8,9], actually, it is the trigonal warping of the energy
bands involved which gives rise to a finite second-order optical
nonlinearity of gapped graphene at the normal incidence of ra-
diation on its surface. In contrast, a few other mechanisms of the

2χ ( ) nonlinearity in gapless graphene, discussed in the literature
previously [4,14–20], may cause this effect either at the oblique
incidence of radiation [4,14,15] or in the presence of a direct
electric current flowing in the graphene plane [16–20].

On a low-energy scale, the modulation amplitude U rsk ( ) of the
Bloch eigenfunction rskΨ ( ) corresponding to Esk of Eq. (1) is ex-
pressed in terms of atomic 2pz orbitals r Rnφ ( − ) as follows:

⎡⎣ ⎤⎦U C i Nr r R K r Rexp / ,
3

s
l

s
l

n

N

n l n lk k
1

∑ ∑ τ τφ( ) = ( − − ) − ( − − )
( )

( )

=

where l¼1, 2 is the sublattice index, Rn stands for the positions
vector of the nth primitive two-atomic unit cell of the 2D lattice
structure under consideration, N is the total number of the lattice
sites occupied by carbon atoms, τl denotes the position vector of
the lth site, measured relative to the endpoint of the Rn, and the
coefficients Cs

l
k

( ) are given by
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The upper (lower) sign on the right-hand side of these equations
refers to the conduction (valence) band.

In the following, we will ascribe an effective thickness d to
monolayer graphene, which allows the second-order NLO

properties of this material to be described in terms of the effective
volume NLO susceptibility tensor 2χαβγ

( ) . This is especially convenient
for assessing optical nonlinearities of mono- or few-layer struc-
tures as compared to those of truly three-dimensional (bulk)
materials [14,21–23]. A value of d ( 0.34 nm≃ ), normally used for
this purpose in the case of graphene, is equal to the extension of
the π orbitals out of the graphene plane or, what is almost the
same, to the layer separation in graphite.

The SiC-substrate-induced breaking of the inversion symmetry
of graphene reduces its symmetry class to D h3 . With this sym-
metry, the second-order NLO susceptibility tensor 2χαβγ

( ) has four
nonvanishing surface elements with indices yyy, yxx, xyx, and xxy,
among which only one is independent [5,24,25]:

. 6yyy yxx xyx xxy
2 2 2 2χ χ χ χ= − = − = − ( )

( ) ( ) ( ) ( )

If both the normally incident ω1 and ω2 pump beams are linearly
polarized along the y-axis (i.e., in parallel to the armchair direction
on the graphene plane), then it is enough to consider only the
element yyy

2χ ( ) , which we will denote simply 2χ ( ) in what follows.

3. Difference-frequency generation susceptibility

To derive a formula for the DFG susceptibility
; ,2

3 1 2χ ω ω ω( − )( ) , we adapt the microscopic approach developed
by Genkin and Mednis [26] in their nonlinear conductivity theory
of bulk semiconductors. We refer the readers, who are unfamiliar
with this approach, to our previous papers [27,28] where a de-
tailed account of the theory has been given. It is worth stressing
that our nowadays understanding of the NLO response of semi-
conductors on the whole is also based on the fundamental results
obtained by Sipe et al. [29–31], whose methodology is close, in
spirit, to that of the Genkin–Mednis theory.

For the two-band model described above, the relevant general
expression for the 2χ ( ) can be partitioned as follows:

; , ; , ; , , 7A B
2

3 1 2
2

3 1 2
2

3 1 2χ ω ω ω χ ω ω ω χ ω ω ω( − ) = ( − ) + ( − ) ( )( ) ( ) ( )
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with kssΩ ( )′ and kss jΦ ( )′ defined by
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respectively. In the above equations, e is the magnitude of the
electron charge, V is a normalization volume of the system, P∑
stands for the summation over the different permutations of the
frequencies ω1, ω2, and 3ω− , resulting in six terms, and, finally,

E Ess s sk kωℏ = −′ ′ is the energy distance between the two bands
involved at fixed value of k. The damping of the excited electronic
states due to relaxation effects neglected in Eqs. (8) and (9) can be
taken into account by changing the frequency from kssω ( )′ to
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