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a b s t r a c t

We investigate the nature of nonlinear spin excitations in a square lattice model of ferromagnetic (FM)
spin system with bilinear and biquadratic interactions. Using the coherent state ansatz combined with
the Holstein–Primakoff (HP) bosonic representation of spin operators, the dynamics is found to be
governed by a discrete nonlinear equation which possesses soliton solution. The modulational instability
aspects of the soliton excitations are analysed for small perturbations in wave vectors.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear spin excitations in magnetic materials have their ap-
plications in microwave communication systems and nonlinear
processing devices where solitons play a role in the description of
such excitations [1–11]. Several effective theoretical methods have
been developed and applied to a large class of nonlinear excitations
in magnets [12–28]. Of these, semiclassical approach turns out to be
successful in the practical realization of a one dimensional spin
system. Such systems have been studied extensively for manifesta-
tions of nonlinear spin dynamics [19–24]. In other words, the nature
of solitary waves in a spin chain have been studied extensively and
are implicit quite well, both in theoretical and experimental aspects.
But the above consideration is not complete especially in a square
lattice model. Recently, Zhong et al. [29,30] have studied experi-
mentally the magnetic properties of the soft magnetic composite
material SOMALOY 500TM in a square sample under different patterns
of flux density with 2D magnetic excitations. Recently, Latha et al.
[31,32] have proposed a square lattice model of Heisenberg ferro-
magnetic spin system and studied soliton excitations after making a
continuum approximation.

Additionally, the magnetic systems with a mixture of interac-
tions act as vital dynamical models exhibiting fascinating nonlinear

phenomena [7,10]. Among them, the biquadratic exchange inter-
action plays a major role and in existence there has been a sub-
stantial interest in the study of ferromagnetic spin chains with
competing bilinear and biquadratic exchange interactions [33–36].
This has encouraged us to study soliton excitation in a square lat-
tice model of ferromagnetic spin system with bilinear and biqua-
dratic interactions.

Modulational instability (MI) is one of the most fundamental
effects associated with wave propagation in nonlinear dispersive
systems [37–40]. Very few studies on the stability aspects of dis-
crete spin systems have been devoted to the 1D ferromagnetic
systems. But so far, studies on the stability aspects of lattice FM
spin system have not yet been reported in the literature. Having
these in mind, in this paper, we also investigate the stability as-
pects of solitons in a square lattice model of Heisenberg spin sys-
tem with bilinear and biquadratic interactions.

The plan of the paper is as follows. In Section 2, we present the
Hamiltonian for a square lattice model of Heisenberg FM spin
system with bilinear exchange and anisotropic interactions and
construct the equation of motion in the semiclassical limit. In
Section 3, we investigate the modulational instability aspects of the
resulting equation by means of linear stability analysis. We study
the nonlinear spin excitations by including biquadratic interactions
in Section 4. In Section 5, we present the linear stability analysis
and analyse the instability regions at different physical conditions
and finally we provide the conclusions in Section 6.
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2. Two dimensional Heisenberg spin chain with bilinear
interactions

We consider for our study a square lattice model of Heisenberg
Ferromagnetic spin system with bilinear and anisotropic interac-
tions. The Hamiltonian for such a system is written as
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where J̃ and J1̃ correspond to the coefficients of bilinear exchange

interactions along the X and Y directions respectively. J2̃ refers to
the neighbouring interaction along the diagonal. This bilinear ex-
change interaction is the cause for the parallel alignment of spin in
ferromagnetic systems [41]. Ã is the uniaxial crystal field aniso-
tropic parameter. It constrains the spin lie in a plane perpendicular
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In Eq. (2), H H

S2 2=
ħ

˜
; J J= ˜; J J1 1= ˜ ; J J2 2= ˜ and A A= ˜ . In most of the

ordered magnetic systems including the ferromagnets, the spin
value is large which reduces the quantum fluctuation and hence a
semiclassical description of the dynamics of the system becomes
meaningful in these cases. In order to investigate the spin dy-
namics of the (2þ1) dimensional ferromagnetic spin system in the
semiclassical limit, we bosonize the Hamiltonian by using
the HP representation [17] of spin operators given by
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By using Eqs. (3) and (4) in Eq. (2), we obtain the Hamiltonian that
is written as a power series in ϵ as
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where m A J J J1 1 2= ( − − − ) and m A J J J22 1 2= ( − + + + ). Now the
spin dynamics can be expressed in terms of the Heisenberg
equation of motion for the boson operator by substituting Eq. (5) in
the following equation of motion:
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where F is given in Appendix A.
In particular, we are concerned with nonlinear excitations of

spins induced by nonlinearity in the magnon system, in which a
cluster of spins makes a trip as compared with the rest of the spins.
Hence, we introduce Glauber's coherent-state representation [18]
for the bosonic operators, a u u un m n m, ,| 〉 = * | 〉† , a u u un m n m, ,| 〉 = | 〉,
u un m n m, ,Π| 〉 = | 〉 with u u 1〈 | 〉 = , where un m, is the coherent amplitude
of the operator an m, for the system in the state u| 〉. Now, we write
down the equation of motion using Eq. (6) for the average u a un m,〈 | | 〉
as
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Eq. (7) describes the nonlinear spin dynamics of an anisotropic
ferromagnet in the discrete form.

3. Linear stability analysis

Various nonlinear dispersive wave systems exhibit instability
known as the modulational instability (MI). The modulational in-
stability is a fundamental phenomenon in nonlinear dispersive
systems and is closely associated with the concept of self-localized
waves or solitons. One of the main effects of modulational in-
stability is the creation of localized pulses so that modulational
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