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a b s t r a c t

Non-equilibrium energy transfer in thin aluminum film is examined and analytical solution for the
radiative transport equation is presented for the electron and lattice subsystems. Electron–phonon
coupling is incorporated in the radiative transport equation to account for the energy exchange between
the electron and the lattice sub-systems during their thermal communications. The radiative transport
equations are reduced to a system of integral equations in the form of Fredholm integral equation of the
second kind and they are solved analytically through the integral transformations technique. The
analytical solution for temperature distribution in lattice and electron sub-systems is simulated for
various film thicknesses. The analytical solution of two-equation model is also presented to compare the
findings of the radiative transport in the film. The analytical solution of the radiative transport equation
is validated through the numerical predictions. It is found that numerical predictions agree well with the
findings of the analytical solution. Lattice site and electron temperatures obtained from the analytical
solution differ from those resulted from the two-equation model for the aluminum film thickness of
0.1 mm because of the ballistic behavior of the phonons emitted at high temperature edge of the film.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In thin metallic films, thermal separation takes place between
electron and lattice sub-systems during the non-equilibrium
energy transport. The non-equilibrium transport takes over the
diffusional process because of the small film thickness, which is
comparable to the mean free path of phonons. Thermal commu-
nication between the electron and the lattice sub-systems, which
is governed by the electron–phonon coupling, forms the bases for
the thermal energy transport in the film. Several approaches are
introduced to formulate the non-equilibrium energy transport in
the metallic films. Some of these approaches include hyperbolic
telegraph equations [1], two-equation model [2], and electron
kinetic model [3]. The previous approaches [1–3] provide solution
to the heating problem, the findings do not give physical insight
into the heating process including contribution of the ballistic
phonons to the energy transport. However, the solution of Boltz-
mann transport equation provides information on the phonon
intensity distribution during the thermal transport. Although numer-
ical solution of the Boltzmann equation pertinent to non-equilibrium
energy transport in thin films is possible [4], the analytical solution
to the Boltzmann equation gives information between the heating

parameters and the film characteristics. In addition, analytical solu-
tion minimizes the computational effort for the numerical solution of
the heating problem. Consequently, investigation into the analytical
solution of the Boltzmann equation becomes essential.

Considerable research studies were carried out to examine the
solution of the Boltzmann equation. A multi-scale thermal device
modeling incorporating the diffusion in the Boltzmann Transport
Equation was carried out by Pisipati et al. [5]. The simulation of the
thermal model was performed using the COMSOL multi-physics
finite element code. In addition, they discussed the Boltzmann
transport model with and without diffusion for multilayers including
the interface conditions. Coupling of heat and momentum transfer
between nanostructured surfaces was investigated by Donkov et al.
[6]. They derived the expression for the thermally-induced force as a
function of the geometric parameters characterizing the surface
topography and compare the results with the findings of the
Monte-Carlo simulations. In addition, they indicated that when the
surfaces were held at different temperatures the heat transfer was
accompanied by a transfer of momentum such that a force was
created parallel to the surface. Thermal conduction in the anisotropy
of silicon nano-films was studied by Terris et al. [7]. They showed
that the cross-plane thermal conduction appeared to be less than the
in-plane thermal conduction due to the presence of anisotropy.
Longitudinal thermal conductivity of radially hetero-structured
nano-wire was examined by Lu [8]. He demonstrated that the
thermal conductivity of the structures could be modulated by
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changing the radius ratio between the shell layer and the core layer
of the nanowire heterostructures and the findings might serve as a
possible way for tuning the thermal conductivity of nanostructures.
The size-dependent thermal conductivity in nano-systems based on
non-Fourier heat transfer was investigated by Ma [9]. He presented
the analytical model to predict the effective thermal conductivity
along dielectric thin films or nanowires with smooth wall surfaces.
The size effect in micro and nano-structures was studied by Wenjun
et al. [10]. The model developed could be conveniently used to
approximate the solution of the Boltzmann transport equation and
the results could be used for the predictions of the electrical
resistance and/or thermal conductivity of the metallic substrates as
well as semiconductor nano-structures. Phonon heat conduction in
micro/nano-cylindrical and spherical media was investigated by Zeng
[11]. He showed that the phonon transmission and reflection were
the dominant factor for determining the equivalent thermal con-
ductivity of micro/nano-cylindrical and spherical media and signifi-
cant temperature drop occurred at the interface.

Although numerical solution of the Boltzmann equation is
possible, the simulations require excessive computer power and
computational efforts. Analytical solution to the Boltzmann equa-
tion reduces the computational efforts and provides the analytical
relations between the film properties and the phonon intensity
distribution. However, the analytical solutions presented in the
previous study [12] is limited with the emitted and the reflected
phonon intensities across the film and the solution for the
equilibrium intensity is not provided. Therefore, in the present
study, analytical solution of the Boltzmann equation pertinent to
metallic thin film is presented. Since the thermal separation takes
place between the electron and the lattice sub-system, the solu-
tion covers the radiative energy transfer in both sub-systems. The
results are extended to include the effects of aluminum film
thickness on the phonon intensity distribution.

2. Mathematical analysis

The Boltzmann transport equation can be reduced to a phonon
radiative transport equation, which can be written as [13]:
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In Eq. (1), I¼ I (x,μ,t) is the phonon intensity in units of W/m2, x
is the distance along the film thickness, μ¼cos(θ), θ is the angle of
the velocity (momentum) vector of a phonon from the x-axis and t
is the time. v is the phonon speed and Λ is the phonon mean free
path. However, for the metal thin films, thermal separation of
electron and phonon sub-systems takes place during the heating
process and re-structuring of the energy equation becomes neces-
sary to account for the energy transport in each sub-system.
Therefore, in each sub-system, a separate equation for radiative
phonon transport should be written in line with the Boltzmann
equation. The thermal communication between the electron and
the lattice sub-systems takes place through electron–phonon
coupling process. In order to account for the thermal communica-
tion of the sub-systems, electron–phonon coupling needs to be
incorporated in the governing equation of radiative phonon
transport.

2.1. The coupled system of equations of phonon radiative transfer in
lattice sub-system of aluminum film

Energy transport in the aluminum thin films is considered to be
governed by the radiative transport. In order to analyze the energy
transport in the lattice sub-system, the modified Boltzmann
equation satisfying the conservation of energy can be written as:
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In the case of the electron sub-system, the proposed equation

for the energy transport satisfying the conservation of energy can
be written as:
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In Eqs. (2) and (3) above, Ip, vp, Λp and Cp, G are the phonon

intensity, speed, mean free path, and volumetric specific heat and
the electron–phonon coupling constant, respectively.

In the case of the steady transport, Eq. (2) satisfies the
conservation of energy and it reduces to following equations for
emitted and reflected phonon intensities (Fig. 1).

Nomenclature

C volumetric specific heat capacity of the dielectric
material

Ce volumetric specific heat capacity of the electron sub-
system

Cp volumetric specific heat capacity of the phonon sub-
system

G electron–phonon coupling constant
I frequency independent phonon intensity
Iþ forward intensity
I�1 backward intensity
I* equilibrium phonon intensity
ke electron sub-system thermal conductivity
kp phonon sub-system thermal conductivity
L film thickness
t time
T temperature
Te electron sub-system temperature

Tp phonon sub-system temperature
v speed of sound
vp speed of sound in lattice sub-system
ve speed of sound in electron sub-system
x Cartesian coordinate

Greek symbols

γ G
Cυ

λ 1
Λ� G

Cυ
Λ phonon mean free path
μ cosine of the azimuthal angle
φ azimuthal angle

Index

e electron
p phonon

B.S. Yilbas et al. / Physica B 454 (2014) 15–2216



Download English Version:

https://daneshyari.com/en/article/8162132

Download Persian Version:

https://daneshyari.com/article/8162132

Daneshyari.com

https://daneshyari.com/en/article/8162132
https://daneshyari.com/article/8162132
https://daneshyari.com

