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a b s t r a c t

The thermodynamic Bethe ansatz equations for the N¼6 Coqblin-Schrieffer model with crystal fields
have been solved numerically. The realistic case of three Kramers doublets with arbitrary splittings has
been studied for the first time. The specific heat has been calculated for representative combinations of
the ionic energy splittings providing ample material for comparison with experimental results for
Cerium impurities and compounds.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The single ion Kondo model and its generalization to a N-fold
degenerate ionic configuration, the SU(N) Coqblin-Schrieffer [1]
model, has been used successfully to describe the thermodynamic
properties of dense Kondo systems [2,3,4]. Apparent non-Fermi-
liquid like behavior has been explained (within an N¼4 approx-
imation) as stemming from the interplay of Kondo effect and
crystal field splitting [5,6].

The change of the effective spin-degeneracy N due to the
interplay between Kondo and crystal field effects has been studied
experimentally by investigating various Cerium based pseudo-
ternary intermetallic substitution series [7]. Specific heat data
have been fitted by combining exact N¼2 Bethe ansatz or resonant
level model results with crystal field Schottky terms [8].

Within the exact solution [9,10] of the Coqblin-Schrieffer
model by Bethe ansatz the specific heat was calculated already
for three special cases of crystal field configurations: (a) the case
that the N¼6 multiplet is split into a Γ6 doublet and a Γ8 quartet
by small cubic crystal fields [11], (b) the case that a low lying
quartet is further split into two doublets while the highest doublet
can be neglected, resulting in an effective N¼4 model [12], and (c)
the case that the N¼6 multiplet is split into three equidistant
Kramers doublets [13] (cf. Fig. 1).

In the two latter cases it was possible to treat the full range of
crystal field splittings showing in the specific heat the separation
for large crystal fields into an effective spin-1/2 (N¼2) Kondo
peak at low temperatures and a Schottky-type peak at high

temperatures. In all three cases a shoulder like structure develops
for low to intermediate crystal fields. In the case of a low lying Γ8

quartet the shoulder appears at the high temperature side of
the peak.

In the present work the above cases have been generalized to
the case of three Kramers doublets with arbitrary splittings. Also
case (a) has been reexamined numerically and extended to higher
crystal field strengths.

These new results allow a quantitative comparison with experi-
mental data that makes it possible to identify deviations from single-
ion behavior. They also show how the interplay between crystal fields
and Kondo effect reduces the effective spin-degeneracy N.

2. Model and thermodynamic equations

The Coqblin-Schrieffer Hamiltonian can be written in terms of
the N ionic crystal field states jr〉 with energy levels Er and the
usual notation for conduction electron operators C†

k;r where the
exchange interaction is given by a permutation operator:

H¼∑
k;r
kC†

k;rCk;r þ J ∑
k;r;k0 ;r0

jr〉〈r0jC†

k0 ;r0
Ck;rþ∑

r
Er jr〉〈rj ð1Þ

For integrability of the model a linear dispersion of the conduction
electron energy is assumed as well as a small exchange coupling J
independent of r. The Bethe ansatz solution requires also an ad hoc
cut-off D that enters the Kondo temperature (non-universally
defined here as) TK�D exp(–1/N|J|).

The thermodynamic properties of the model are calculated
from certain pseudo-energy functions εn

(r)(λ), N¼1, 2,…, 1,
1rrrN–1 that are determined by the Bethe ansatz equations [9].
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In the scaling limit J-0, D-1, TK kept fixed these read (with
εðrÞ0 ¼ �1):

� lnf1þexp½�εðrÞn ðλÞ= T � g ¼ � sin ðrπ = NÞexp½λ�δn;1

þ ∑
N�1

q ¼ 1
Srqnðlnf1þexp½εðqÞnþ1ðλÞ=T �gþ lnf1þexp½εðqÞn�1ðλÞ=T �g

�s�1
n lnf1þexp½εðqÞn ðλÞ=T �gÞ; ð2Þ

where snf ðλÞ denotes the convolution snf ðλÞ ¼ R1
�1 sðλ�λ'Þ

f ðλ'Þ dλ', and the kernels Srq are given by their Fourier transforms:

SrqðωÞ ¼ sin hðminðq; rÞπω=NÞ sin hððN� maxðq; rÞÞπω=NÞ
sin hðπωÞ sin hðπω=NÞ and

s�1ðωÞ ¼ 2cosh ðπω=2Þ :
The free energy at temperature T is given by the following
expression:

F ¼ �T ∑
N�1

r ¼ 1

Z 1

�1

sin ðrπ=NÞ lnf1þexp½εðrÞ1 ðλ Þ=T � g dλ
f cos h ½λ� lnðTK=TÞ�� cos ðrπ=NÞg 2π ð3Þ

The thermodynamic properties in the absence of external fields
depend only on the ratio T/TK. TK� TK(N) can be related by the
universal Wilson number [14] to the conventionally defined Kondo
temperature. It is connected with the linear specific heat coeffi-
cient γ¼C/T for T-0 through TK(N)¼(N–1) π/(3γ).

The numerical solution of the type of Eq. (2) has become
standard practice since their first occurrence [15] with the spin-
1/2 (N¼2) Kondo model, provided that the limiting values εn

(r)(λ)
for λ-71 are known. For nZ2 the equations can be written in
the following form [10]:

εðrÞn =T ¼ sn lnf1þexp½εðrÞnþ1ðλÞ=T �gþsn lnf1þexp½εðrÞn�1ðλÞ=T �g
�sn lnf1þexp½�εðrþ1Þ

n ðλÞ=T �g�sn lnf1þexp½�εðr�1Þ
n ðλÞ=T�g: ð4Þ

In the limit λ--1 the integral equations reduce to the following
algebraic recurrence relations (with the notation: gðrÞr � ln f 1
þexp½εðrÞn ð�1Þ=T � g; bðrÞ

n � � lnf1�exp½�gðrÞn �g):

gðrÞn �1
2 fg

ðrÞ
nþ1þgðrÞn�1g ¼ bðrÞ

n �1
2 fb

ðrþ1Þ
n þ bðr�1Þ

n g;
gðrÞ0 ¼ 0; bð0Þ

n ¼ bðNÞ
n ¼ 0

lim
n-1

gðrÞnþ1�gðrÞn ¼ Ar=T : ð5Þ

where the generalized fields Ar (ArZ0) are related to the energy
levels Er of the ionic ground state in the particular crystal field
configuration: Ar¼Erþ1�Er, 1rrrN�1, cf. Fig. 1.

An analytic solution to Eq. (5) is known only in the magnetic
field case (Ar¼gμBH for all r). In the above cases (b) and (c) a
numerical solution was accomplished by an interval halving
method [13]. This was facilitated by the fact that in both cases
only one field parameter A2� A has to be taken into account (cf.
Fig. 1, A1¼A3¼A5¼0), and that due to the symmetry r-N–r of
Eq. (5) the problem reduces to a two-dimensional one in case (b)
and a three-dimensional in case (c). In the general case of unequal

Kramers splittings A4aA2 the problem is five-dimensional and
this method appears not to be feasible.

In order to overcome this problem a new strong field (or low
temperature) expansion has been devised for the case (c) that has
then been generalized to the new case (d) of three Kramers
doublets with unequal splittings (A4a0, A2a0) and to case (a)
(A2¼0 or A4¼0). The physical backing for this expansion comes
from the observation that for large values of the crystal field
splitting the system can essentially be described as an effective
spin-1/2 (N¼2) Kondo system (or an effective spin-3/2 (N¼4)
system for the case (a) with A2¼0).

We look exemplarily at the cases (c) and (d) describing three
Kramers doublets. Writing A4¼x A, A� A2 (x40), for A/T-1 we
observe the decoupling of Eq. (5) due to bð2Þn -0; bð4Þn -0 for A/T-
1. The solution to (5) is then

gðtÞn ðA=T-1Þ ¼ 2 lnðnþ1Þ; t ¼ 1;3;5

gðsÞn ðA=T-1Þ ¼ n As=T�1
2
fgðsþ1Þ

n ðA=T-1Þþgðs�1Þ
n ðA=T-1Þg;

s¼ 2;4 ð6Þ
We now introduce the deviations from the strong field limit as

grn ¼ grnðA=T-1ÞþuðrÞ
n ; 1rrr5 ð7Þ

and rewrite Eq. (5) in terms of uðrÞ
n :

uðtÞ
n �1

2
uðtÞ
nþ1þuðtÞ

n�1

n o
þ ln 1�kn½expð�uðtÞ

n Þ�1�� �

¼ 1
2
ln 1�ðnþ1Þ2expð�nAtþ1=T�uðtþ1Þ

n Þ
n o

þ1
2
ln 1�ðnþ1Þ2expð�nAt�1=T�uðt�1Þ

n Þ
n o

; t ¼ 1;3;5

uðsÞ
n �1

2
uðsÞ
nþ1þuðsÞ

n�1

n o
þ ln 1�ðnþ1Þ2expð�nAs=T�uðsÞ

n Þ
n o

¼ 1
2

ln 1�kn½expð�uðsþ1Þ
n Þ�1�� �þ1

2 ln 1�kn½expð�uðs�1Þ
n Þ�1�� �

;

s¼ 2;4

with A0 � A6 �1 and kn ¼ ½nðnþ2Þ��1: ð8Þ
Eq. (8) allows for a systematic expansion of un(r) in powers of exp(-A/T)
and are also amenable to a numerical treatment by iteration.

From this expansion we have come to the following formulae
for the general case (d) confirmed by numerical evaluation:

gðtÞn ¼ 2 ln ½nþ1þαðtÞ�þOðexpð�ðnþ1ÞMinðAsÞ=TÞÞ; t ¼ 1;3;5

αð1Þ ¼ �2expð�A2=TÞ
1�expð�A2=TÞ

þ�2expð�ðA2þA4Þ=TÞ
1�expð�ðA2þA4Þ=TÞ

αð3Þ ¼ �2expð�A2=TÞ
1�expð�A2=TÞ

þ�2expð�A4=TÞ
1�expð�A4=TÞ

αð5Þ ¼ �2expð�A4=TÞ
1�expð�A4=TÞ

þ�2expð�ðA2þA4Þ=TÞ
1�expð�ðA2þA4Þ=TÞ

gðsÞn ¼ nAs=T�
1
2

gðsþ1Þ
n þgðs�1Þ

n

� �þ f sðA2=T ;A4=TÞ
þOðexpð�ðnþ1ÞMinðAsÞ=TÞÞ; s¼ 2;4

f 2ðA2=T ;A4=TÞ ¼ �4 ln ½1�expð�A2=TÞ�þ2 ln ½1�expð�A4=TÞ�
�2ln½1�expð�ðA2þA4Þ=TÞ�

f 4ðA2=T ;A4=TÞ ¼ 2 ln ½1�expð�A2=TÞ��4 ln ½1�expð�A4=TÞ�
�2ln½1�expð�ðA2þA4Þ=TÞ� ð9Þ

We can determine gn
(r) numerically if we first truncate Eq. (8) at

some large value m, solve them for un�1
(r) , then insert gmþ1

(r) and gm
(r)

according to (9) via (7) and compute all un
(r) with 0rnrm–1

down the chain; u0
(r) computed this way will in general not be

equal to 0. Next we set u0
(r)¼0 and use the computed un

(r) with
1rnrm–1 as starting values that we insert into the original form
of the truncated Eq. (8) and calculate un

(r), 1rnrm up the chain.
We take the obtained values of un(r) as new starting values for the

Fig. 1. The energy levels for the ionic ground state of Ce3þ ions in cubic crystal
fields: case (a) and in non-cubic crystal fields considered in cases (b) A4cA2� A
and (c) A4¼A2 � A.
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