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a b s t r a c t

The existence and the nature of a newmode of electronic collective excitations (quadrupole plasmons) in
confined one-dimensional electronic systems, used to mimic finite-size linear metal atomic chains, have
been predicted by an eigen-equation method. The eigen-equation based on the time-dependent density-
functional theory is presented for calculating the collective excitations in confined systems. With this
method, all modes of collective excitations in the 1D systems can be found out. These modes include
dipole plasmons and quadrupole plasmons. The dipole plasmon mode corresponds to the antisymmetric
oscillation of induced charge, and can be shown as a resonance of the dipole response. In the quadrupole
plasmon modes, the induced charge distribution is symmetric, and the dipole response vanishes. The
motion of the electrons in the quadrupole modes is similar to the vibration of atoms in the breathing
mode of phonons. This type of plasmon can be shown as a resonance of the quadrupole response, and
has to be excited by a non-uniform field.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Plasmon properties in nano-structure systems have attracted
more and more physics researcher's attentions, due to their
fundamental significance [1–11] and potential applications [12–
21]. Nanostructures sustain localized plasmon resonances within
their confining boundaries, leading to dynamic charge accumula-
tion and strong enhancement of field near their surfaces. Such
plasmon oscillations and the decay at surfaces are responsible for
the novel applications in optical imaging [15], single-molecule
sensing and spectroscopy [16,17], photocatalytic reactions [18],
nano-photonics and -electronics [19] and cancer therapy [21].

Recent scanning tunneling microscope observations showed
development of one-dimensional (1D) band structure when the
numbers of atoms in Au chains on NiAl(110) exceed 10 [22]. This
arouses the research interest on the plasmon excitation in 1D
electronic systems of a few atoms. Many subsequent theoretical
calculation [7–11,23–25] confirmed the presence of the collective
plasmon mode in the confined one-dimensional electronic sys-
tems of a few atoms. Collective excitations in few-atom systems
have been investigated both experimentally [26–30] and theore-
tically [31–34] in last decades. However, recent theoretical
studies of plasmon excitations are mostly done via calculating
the dipole response [8–11] and other characteristic responses
[23–25] by applying an external field, and the excitations are

shown as the corresponding response resonances. One may
wonder whether the modes predicted in this way are dependent
on the applied external fields. The answer is clearly yes. It has
been shown in Ref. [9] that a longitudinal field induces
longitudinal-mode plasmon resonance, and a transverse field
induces a transverse resonance. Therefore, finding a proper
theoretical approach to calculate plasmon spectra is essential
for further studies of plasmons in confined electronic systems. An
eigen-equation approach was ever introduced for confined
condensed-matter systems with a spherical shape in Refs. [31–
33], and the plasmon multipolarities were studied. In present
work, we attempt to present an eigen-equation of plasma
collective-oscillation in confined systems, and find all plasmon
excitations of the systems by solving the equation. Consequently,
we found a new mode of electronic collective excitations, quad-
rupole plasmons, in the confined 1D electronic systems. In the 1D
systems, the dipole plasmon mode corresponds to the antisym-
metric charge oscillation and can be shown as a resonance of the
dipole response [8–11]. Distinct from the dipole plasmon, the
quadrupole plasmon corresponds to the symmetric charge oscil-
lation and the dipole response vanishing, but can be shown as a
resonance of the quadrupole response. The motion of the elec-
trons in the quadrupole modes is similar to the vibration of atoms
in the breathing mode of phonons. Our calculations are made
based on the two models: the one-dimensional electron gas and
one-dimensional tight-binding models. Refs. [8,9] and present
work have shown that the longitudinal dipole-plasmon reso-
nances in linear atomic chains predicted by using a confined 1D
electron gas model are qualitatively in agreement with the
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calculations made by ab initio time-dependent density functional
theory. We believe that the new mode of collective excitations
exists in the atomic chain systems in Refs. [8–11,23–25].

2. Theoretical approach

Based on the time-dependent density-functional theory
(TDDFT), the induced charge density [35] can be written as

ρðr;ωÞ ¼
Z

dr0Πðr; r0;ωÞVðr0;ωÞ; ð1Þ

Here we have transformed the time-domain into the frequency-
domain. Where the Kohn–Sham response function, i.e., the den-
sity–density response function of non-interacting electrons with
unperturbed density, ρ0, defined by

Πðr; r0;ωÞ ¼ δρ½V �ðr;ωÞ
δV ðr0;ωÞ V ½ρ0 �:

�� ð2Þ

where the frequency dependent charge density ρ½V �ðr;ωÞ is a
functional of the potential V, and V ½ρ0� is a functional of the
unperturbed density ρ0. In Eq. (1), the perturbation potential is

Vðr;ωÞ ¼ Vexðr;ωÞþVinðr;ωÞ; ð3Þ
where Vexðr;ωÞ is the external potential, and

Vinðr;ωÞ ¼ 1
4πε0

Z
dr0

ρðr0;ωÞ
jr�r0j þ

Z
dr0Kxcðr; r0;ωÞρðr0;ωÞ ð4Þ

is the induced potential. The time-dependent xc kernel is defined
by Kxcðr; r0;ωÞ ¼ δVxc½ρ�ðr;ωÞ=δρðr0;ωÞ. In fact, the density–density
response function defined in Eq. (2) is the random-phase approx-
imation (RPA) Lindhard function:

Πðr; r0;ωÞ ¼ 2e2∑
mn

f ðEmÞ� f ðEnÞ
Em�En�ω� iγ

ψ n

mðrÞψnðrÞψ n

nðr0Þψmðr0Þ; ð5Þ

where f ðEnÞ is the Fermi-function, ψnðrÞ is the energy eigen-
function of electrons in the unperturbed system, and En is the
eigen-energy. In this paper only zero temperature case is con-
sidered, so f ðEnÞ ¼ θðEF�EnÞ; where EF is the Fermi energy. The
unperturbed eigen-states can be obtained using local density
functional theory. Substituting Eq. (5) in Eq. (1), we have

ρðr;ωÞ ¼ 2e2∑
mn

f ðEmÞ� f ðEnÞ
Em�En�ω� iγ

ψ n

mðrÞψnðrÞ½Vex
n;mðωÞþVin

nmðωÞ�; ð6Þ

where VX
nmðωÞ ¼ R

drVXðr;ωÞψ n
nðrÞψmðrÞ. Combining Eq. (6) with

Eq. (4), we can obtain the self-consistent equation for Vinðr;ωÞ:

Vinðr;ωÞ ¼ 2e2∑
mn

f ðEmÞ� f ðEnÞ
Em�En�ω� iγ

Z
dr0Kðr; r0;ωÞψ n

mðr0Þψnðr0Þ½Vex
n;mðωÞ

þVin
nmðωÞ�; ð7Þ

where Kðr; r0;ωÞ ¼ 1=4πε0jr�r0jþKxcðr; r0;ωÞ. Multiplying Eq. (7)
by ψn

m0 ðrÞψn0 ðrÞ and integrating over the space yield

∑
mn
½δm0n0 ;nm�Mm0n0 ;mnðωÞ�Vin

nmðωÞ ¼∑
mn
Mm0n0 ;mnðωÞVex

n;mðωÞ; ð8Þ

with

Mm0n0 ;mnðωÞ ¼ 2e2
f ðEmÞ� f ðEnÞ

Em�En�ω� iγ

Z
dr

Z
dr0ψn

m0 ðrÞψn0 ðrÞKðr; r0;ωÞψn

mðr0Þψnðr0Þ:

Now one can calculate the collective charge-oscillation (Eq. (6)) by
solving Eq. (8). Setting Vex

n;mðωÞ ¼ 0, Eq. (8) becomes

∑
mn
½δm0n0 ;nm�Mm0n0 ;mnðωÞ�Vin

nmðωÞ ¼ 0: ð9Þ

This is the plasmon eigen-equation we derived, it can be exten-
sively used to study the excitation problems in condensed matter
system, and compared with the RPA, it is more suitable to calculate
the plasmon excitation with the electromagnetic interaction. So

the eigen-equation can be generally applied to confined electronic
systems with the Coulomb interactions and other multi-
interaction. Furthermore,with the equation all the plasmons of a
system may be found and are not dependent on the applied
external fields. It is worth to point out that using the symmetry of
Vin
nmðωÞ andMm0n0 ;mnðωÞ, the number of equations in Eqs. (8) and (9)

may be reduced. Usually, the eigen-states of a confined system
may be expressed by real wave-functions, and in this case the
number of equations in Eqs. (8) and (9) can be further reduced.

According to eigen-equation (9), the plasmon excitation energy
ℏω can be determined by AðωÞ ¼ det½δm0n0 ;nm�Mm0n0 ;mnðωÞ� ¼ 0.
However, AðωÞ is a plural value due to the finite small imaginary
part iγ. In the practical calculation a small imaginary part iγ is
necessary since the electrons always suffer some scattering, so the
eigen-plasmon excitation energy ℏω is obtained by Re½AðωÞ� ¼ 0
with Im½AðωÞ� � 0. Equivalently, here we use Im½1=AðωÞ� to give a
real plasmon energy that Im½1=AðωÞ� show a finite peak at the
plasmon energy ℏω. This eigen-equation method not only let us
find out all the plasmon modes of a system, but also greatly
reduces the amount of computation in comparison with the
original TDDFT.

3. Results and discussion

3.1. Quasi-one-dimensional electron gas model

First we study the plasmon excitation in a quasi-one-
dimensional electron gas (Q1DEG) confined within a quantum
well with length of ðNþ1Þa and width of 2a, which is used to
mimic a finite-size atomic chain as shown in Fig. 1, where a is the
virtual lattice constant and taken as 0.35 nm in our calculation. For
this model, the unperturbed wave-function is ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðNþ1Þa2

p
Þ

sin ðnπx=ðNþ1ÞaÞ sin ðπy=2aÞ. With this model an atomic chain
of N atoms is mimicked. The similar model was employed by Gao
and Yuan [7] to study the plasmon excitation of a atomic chains.
Their calculations indicate that in comparison with the pure RPA
the exchange term Kxcðr; r0;ωÞ gives rise to only very slight shift in
plasmon frequency. In present work, we are just interested in the
qualitative investigation of the plasmon excitation, in particularly
finding out all of the collective excitation in the confined systems.
Therefore, we will ignore exchange term Kxcðr; r0;ωÞ to simplify
our calculation.

Our calculation shows that some plasmon eigen-modes corre-
sponding to the peaks of dipole absorption spectra induced by a
local uniform field such as Vextðx; tÞ ¼ �xE0e� iωt [7], but for other
eigen-modes there is not appearance of the absorption-peak. In
Fig. 2(a) we show an eigen-mode by a peak of the spectrum
function Im½1=AðωÞ� at frequency ω� 0:3058, and in Fig. 2(b) one
can find that this frequency is the zero-point of Re½AðωÞ�, where the
numbers of atoms N¼12, and the numbers of electrons Ne ¼ 12.
The energy (frequency) is normalized by π2ℏ2=2mea2, and me is
the mass of electrons. In addition, taking Vextðx; tÞ ¼ �xE0e� iωt as in
Ref. [7], we calculate the dipole response function (absorption
spectrum) PðωÞ ¼ω

R
x Im½ρðr;ωÞ� dx dy by using Eqs. (6) and

Fig. 1. A schematic demonstration of the considered system.
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