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a b s t r a c t

We analyze the dynamical response of a ultracold binary gas mixture in the presence of strong boson–
fermion couplings. Mapping the problem onto that of the optical response of a metal/semiconductor
electronic degrees of freedom to electromagnetic perturbation we calculate the corresponding dynamic
linear response susceptibility in the non-perturbative regimes of strong boson–fermion coupling using
diagrammatic resummation technique as well as quantum Monte Carlo simulations. We evaluate the
Bragg spectral function as well as the optical conductivity and find a pseudogap, which forms in certain
parameter regimes.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ultracold gas mixtures of bosons and fermions, which arise
very naturally in the sympathetic cooling processes, are very
interesting quantum systems with physical properties very differ-
ent from conventional quantum gases [1,2]. In view of recent
advances in the field of correlated ultracold gases it is very
important to understand their dynamical properties, e.g. their
response to an external dynamical scattering potential brought
about by a change of trapping potential. If the bosonic subsystem
is dominantly in the BEC phase the effective low-energy interac-
tion with the fermionic subsystem is the coupling between the
latter and the phonons (sound waves) of the former. From the
mathematical point of view such a system is nothing but an
electron–phonon coupled system best described by the Fröhlich
Hamiltonian, see Eq. (1) in Section 2, the interaction term of which
describes precisely the scattering of fermions on the bosonic degrees
of freedom mentioned above [3]. In the case of low fermion
concentrations it describes individual impurities imbedded into a
continuum of massless bosonic modes. Under such conditions the
physics of the system is supposed to be very close to that of the
classical polaron, taking place in semiconductors with strong elec-
tron–phonon interaction [4–6].

There are, however, fundamental differences between the con-
ventional (solid state) polarons and their BEC counterparts. The
most obvious one is the different phonon spectrum of the bosonic
subsystem as well as an explicit momentum dependence of the
electron-phonon coupling [6]. While these details do not alter the
general picture of polaron static properties (there is still an effective
mass generation and self-trapping), they could possibly alter the
dynamical response, which reveals such important information as
how the impurities interact with their surroundings [7,8]. In this
paper we would like to consider them in full detail and in different
geometries with the special emphasis on strong coupling results
thereby closing the gaps in the existing literature.

The paper is organized as follows. In the next section we
formulate the problem and introduce all relevant quantities.
Section 3 is devoted to the non-perturbative approach inspired
by the classical random phase approximation (RPA). We explain
the details of the implementation and discuss the special features
pertinent to ultracold gas realizations. In Section 4 the calculation
of the dynamical response function is accomplished using numeri-
cally exact quantum Monte Carlo (QMC) simulation technique.
Section 5 contains a discussion of results and offers several avenues
of further progress.

2. The model and observables

An effective low-energy Hamiltonian for a BEC-fermion
mixture has the canonical Fröhlich form [3,6], which is written
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in terms of boson (described by the field operators bk) and fermion
(denoted by aq) degrees of freedom:

H ¼∑
q
ðEq�μÞ a†qaqþ∑

k
ωkb

†
kbkþ∑

q
∑

ka0
Vk a†qþkaq ðbkþb†�kÞ; ð1Þ

where the dispersion of fermions is Eq ¼ q2=2m, μ is their chemical
potential

ωk ¼ ck½1þðξkÞ2=2�1=2 ð2Þ
is the dispersion of the phonon mode with an effective mass mp,
c¼ ð

ffiffiffi
2

p
mpξÞ�1 is the speed of sound in the condensate, and the

coupling is given by Vk ¼ λ½ðξkÞ2=ððξkÞ2þ2Þ�1=4 with λ¼ gIB
ffiffiffiffiffiffi
N0

p
.

gIB is the effective interaction strength between the impurities
and Bogoliubov excitations and can be adjusted by changing the
particle density and/or the s-wave scattering length of collision
processes of the impurity with the bosonic medium. ξ denotes the
healing length of the condensate and is given by ξ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πaBBn0

p
where aBB is the boson–boson s-wave scattering length and n0 is
the condensate density. We would like to point out that the model
(1) is valid for not too strong boson–fermion scattering. As soon as
the Bogolyubov approximation breaks down one has to work with
the full interacting Hamiltonian [6]. Nonetheless, it was demon-
strated previously that realistic boson–fermion mixtures turn out
to show many details, which are adequately described by the
strong coupling limit of the much simpler Fröhlich Hamiltonian
[9]. That is why we concentrate on (1) throughout the paper. Yet
another issue is that strong interactions might change the conden-
sate fraction and thus influence the system parameters. As we focus
on not too strong interactions we would like to neglect these effects.

One fundamental difference between the ‘classical’ semicon-
ductor based electron–phonon coupled system and the one
realized in ultracold mixtures is that the quantum gas system
can be prepared in trapping potentials for fermions and bosons
which might be of different shape and dimensionality. For that
reason we shall later consider systems with different Eq and ωk.
Changing the shape of the trapping potential for the impurity in
space and time, for instance by acceleration with respect to the
BEC, which rests in the laboratory reference frame one induces the
rearrangement of particles. In this way one can access the mobility
of the impurity, which, like in the case of a Brownian motion, is the
ultimate dynamical quantity of the particle [10]. In detail, the
mobility is found from the velocity autocorrelation function, which
translates into the current–current correlation function Πðq;ωÞ in
the Matsubara representation:

Πμνðq; τÞ ¼ �1
V
〈Tτj

†
μðq; τÞjνðq;0Þ〉; ð3Þ

with the current densities defined by

jðqÞ ¼ � 1
mβV

∑
k

kþq
2

� �
a†kþqak: ð4Þ

This picture is very similar to the conventional polaron problem in
semiconductors, where the principal quantity is the momentum-
dependent optical conductivity [11]:

Re½σμνðq;ωÞ� ¼ �e2

ω
Im½ΠR

μνðq;ωÞ�: ð5Þ

Here by abuse of notation the subscript μ in the double sum
indicates the spatial direction with respect to which the conduc-
tance is probed, that is μAfx; y; zg. The superscript R denotes the
retarded correlation function, which is obtained from the one in
the Matsubara representation by the usual analytic continuation.
From the perspective of a solid-state physicist, the optical con-
ductivity computed at q¼0 describes the experimental conditions
quite well, that is probing a sample with optical or X-ray photons
does not lead to a substantial momentum transfer (Δp� 0). In
case of the RF-spectroscopy or the aforementioned experimental

procedures in ultracold quantum gases, this is not necessarily the
case. That is why throughout the paper we shall consider both
q¼0 and finite q situations whenever possible.

Another experimental technique to access the impurity dynamics
is the Bragg spectroscopy [12–17]. In a typical measurement the BEC
is subject to two noncollinear laser beams with photons with wave
vectors k1;2 and energies ω1;2. The fermionic atoms can then
undergo a stimulated scattering absorbing the light from the beam
1 and emitting it into the laser field 2, thereby acquiring momentum
and energy given by the differences of k1;2 and ω1;2. How much of
the momentum and energy is absorbed by the BEC can then be
mapped out by time-of-flight measurements after the trap release
[17]. The absorption spectra are then directly related to the auto-
correlation of the particle density ðhere q¼ k1�k2Þ:

χðq; τÞ ¼ �1
V
〈Tτρ†ðq; τÞρðq;0Þ〉; ð6Þ

where

ρðqÞ ¼∑
k
a†kþqak; ð7Þ

is the particle density operator. Very conveniently the optical
absorption spectrum

RμνΠ ðq;ωÞ ¼ �1
π
ImΠR

μνðq;ωÞ; ð8Þ

and Bragg spectrum (or Bragg spectral function), which we define as

Rχ ðq;ωÞ ¼ �1
π
Im χRðq;ωÞ; ð9Þ

are related to each other in the following way (see Appendix A):

Rχ ðq;ωÞ ¼ q
ωe

� �2
R J
Π ðq;ωÞ; ð10Þ

where ‘J ’ specifies the component in the direction of q. Thus, once
the current autocorrelation function is computed we have access to
measurable quantities for both experimental schemes.

Now we would like to translate the autocorrelation function (3)
into the operator language of the original Hamiltonian. From now
on we skip the vector notation since we would like to restrict
ourselves to 1D only. Experimentally, this can be motivated by the
use of quantum gases in reduced dimensions. Although in trans-
lationally invariant 1D systems no BE condensation is possible, in a
realistic experimental situation there is always a confinement
potential which facilitates a condensation. That is why it is legiti-
mate to work in that picture. In energy-momentum representation
we then obtain

Πðq; iωnÞ ¼ �1
V

Z β

0
dτeiωnτ〈Tτj

†ðq; τÞjðq;0Þ〉 ð11Þ

¼ e2q2

ðiωnÞ2m3V
∑
k

3k2þq2

4

� �
〈a†kak〉�

e2

ðiωnÞ2m2V
∑
q0
q0ðqþq0ÞVn

q0 〈Bq0ρ†ðq0Þ〉

� e2

ðiωnÞ2m2V

Z β

0
dτeiωnτ q2

m2∑
kk0

kþq
2

� �2
k0 þq

2

� �2
〈Tτa

†
kðτÞakþqðτÞa†k0 þq

ak0 〉

"

� q
m
∑
kq0
Vq0q0 kþq

2

� �2
〈TτB

†
q0a

†
kðτÞakþqðτÞρðqþq0Þ〉

� q
m
∑
kq0
Vn

q0q
0 kþq

2

� �2
〈TτBq0ρ†ðqþq0; τÞa†kþqak〉

þ ∑
q0q00

Vn

q0Vq″q0q″〈TτBq0 ðτÞB†
q″ρ

†ðqþq0; τÞρðqþq″Þ〉
#
; ð12Þ

where Bq ¼ bqþb†�q. This formula will be evaluated in the analy-
tical computations of the following section, while for the QMC
simulation of Section 4 the current and density correlations would
be computed in a slightly different way.
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