Author's Accepted Manuscript

Determination of the magnetic anisotropy constant of nanoparticles using measurements of the low-temperature heat capacity

A. Ugulava, S. Chkhaidze, Sh. Kekutia, M. Verulashvili

www.elsevier.com/locate/physb

PII: S0921-4526(14)00651-6

DOI: http://dx.doi.org/10.1016/j.physb.2014.08.005

Reference: PHYSB308594

To appear in: *Physica B*

Received date: 9 July 2014 Accepted date: 9 August 2014

Cite this article as: A. Ugulava, S. Chkhaidze, Sh. Kekutia, M. Verulashvili, Determination of the magnetic anisotropy constant of nanoparticles using measurements of the low-temperature heat capacity, *Physica B*, http://dx.doi.org/10.1016/j.physb.2014.08.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Determination of the magnetic anisotropy constant of nanoparticles using measurements of the low-temperature heat capacity

A. Ugulava, S. Chkhaidze*

Department of Physics, I.Javakhishvili Tbilisi State University, I.Chavchavadze av. 3, 0179, Tbilisi, Georgia

Sh. Kekutia*

B. Chavchanidze Institute of Cybernetics, at the Technical State University, 0186, Tbilisi, S. Euli str. 5.

M. Verulashvili*

Department of Physics, A. Tsereteli Kutaisi State University, Queen Tamar str. 59, 0179, Kutaisi, Georgia

Abstract

At low temperatures, the anisotropy energy can significantly affect heat capacity of a superparamagnetic "ideal gas". At sufficiently low temperatures, when the anisotropy energy of uniaxial magnetic nanoparticles exceeds the energy of thermal fluctuations, the anisotropy energy can be expressed as a sum of the energies of two thermodynamic subsystems (two potential wells). One of these subsystems is composed of magnetic nanoparticles oriented predominantly along the axis of anisotropy, and the other - of particles of opposite orientation. There is a similarity between the considered anisotropy energy and the two-level quantum system. Therefore, the temperature dependence of the magnetic part of the heat capacity (similar to Schottky anomaly) will have a sharp peak. At low temperatures, on the curve of the temperature dependence of the heat capacity, besides a usual T^3 background, a portion with a pronounced maximum is monitored. The relation

Email address: simon.chkhaidze@tsu.ge (S. Chkhaidze)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/8162379

Download Persian Version:

https://daneshyari.com/article/8162379

Daneshyari.com