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Abstract Targeting a new multiple zero finder, in this paper, we suggest an efficient two-point class

of methods, when the multiplicity of the root is known. The theoretical aspects are investigated and

show that each member of the contributed class achieves fourth-order convergence by using three

functional evaluations per full cycle. We also employ numerical examples to evaluate the accuracy

of the proposed methods by comparison with other existing methods.

For functions with finitely many real roots in an interval, relatively little literature is known,

while in applications, the users wish to find all the real zeros at the same time. Hence, the second

aim of this paper will be presented by designing a fourth-order algorithm, based on the developed

methods, to find all the real solutions of a nonlinear equation in an interval using the programming

package MATHEMATICA 8.
ª 2013 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.

1. Preliminaries

Many methods have been developed for solving nonlinear
equations or systems using different methodology, see [2]

and the references therein. On the other hand, solutions them-
selves, can be divided into the simple or the multiple cases.
That is to say, a function might have finitely many zeros in

an interval which some of them are simple while the other ones
could be multiple.

A multiple zero is a root with multiplicity m P 2, also
called a multiple point or repeated root. Clearly, working

and developing on multiple roots of a nonlinear equation is
not an easy task in numerical analysis. Herein, we develop iter-
ative methods to find the multiple root x* with multiplicity m

of a nonlinear equation f(x) = 0, i.e., f(i)(x*) = 0,
i= 0, 1, � � � , m � 1, and f(m)(x*) „ 0. We will also discuss on
finding simple zeros and also multiple zeros when the multi-

plicity of the roots are unknown.
When searching for multiple roots, there are some prob-

lems, which need special attention. The first one is that there

is a neighborhood of x*, here called the error ball, where the
accurate computation of f(x) is not possible because of
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computational (cancelation) errors, actually the errors are big-
ger than function values.

As a result, an in-appropriate iterative method returns an

entirely erroneous root estimate such that it may break down.
Even if having some methods to recognize error ball, we can
only hope a result of lower accuracy [5]. A less severe-problem

is slow convergence. Thus, it is more important if we can devise
methods that ensure computation of the multiple roots at high
precision.

Along with the main above questions, the most important
problem will be remained in implementation. In fact, in appli-
cations, one might to find all the (real) critical points of a non-
linear function in a given interval, while such iterative methods

are sensitive upon the initial points!
All of such needs and questions will be answered and solved

in the following sections. It is assumed in the following that the

derivatives of the function exist and are easily computable.
The remainder sections of this paper unfold the contents in

what follows. In Section 2, a brief discussion on the existing

methods in the literature will be given. In order to contribute,
we first in Section 3 present a two-step method for finding sim-
ple zeros of nonlinear equations. Theoretical aspects support

the quartical convergence. Then, we extend the scheme for
approximating multiple zeros when the multiplicity of the zero
is known. Section 4 dedicates to remind some of the ways of
approximating the order of multiplicity. Next, in Section 5,

we extend one of the methods from the suggested class of Sec-
tion 3 to find multiple zeros when the multiplicity of the zeros
is unknown. In Section 6, some tests will be given to show the

numerical behavior of the attained iterative methods for find-
ing multiple roots by comparison with the existing methods.
Since all the obtained iteration functions up to this point,

are locally fourth-order convergent, and in applications we
need to have the convergence to be guaranteed alongside find-
ing all the real zeros in an interval, in Section 7, we design an

efficient hybrid algorithm to capture all the real solutions by
applying our high-order optimal methods using the efficient
programming package MATHEMATICA. Finally, Section 8 will
be drawn the conclusion of this study with some outlines for

future works.

2. Brief review

It is well-known that when the multiplicity m of the root is gi-
ven then the modified Newton’s method converges quadrati-
cally and can be defined in the following form

xnþ1 ¼ xn �m fðxnÞ
f0ðxnÞ. According to the definition of efficiency in-

dex (defined in [27]), it has 21/2 � 1.414 as its index of effi-
ciency. In fact, we considered that all function and derivative

evaluations per computing step have the same computational
cost. In order to provide better orders and efficiencies many
developments have been given to the literature, see e.g. [22,26].

A third-order Chebyshev’s method [27] for finding multiple
roots is given by

xnþ1 ¼ xn �
mð3�mÞ

2

fðxnÞ
f0ðxnÞ

�m2

2

f2ðxnÞf00ðxnÞ
f03ðxnÞ

: ð1Þ

A note on this scheme is that it needs the computation of the
second derivative along the knowledge of multiplicity to be

implemented, which is costly in many problems. Scheme (2)

has the efficiency index 1.442.
Now, we recall an important finding in this topic regarding

the optimal relation between the number of evaluations and

the local order of convergence. The upper bound for order
of multi-step methods was discussed in [12] by Kung and
Traub, who conjectured that the order of convergence of any
multipoint method without memory, consuming n+ 1, (func-

tional) evaluations per iteration, cannot exceed the bound 2n

(called optimal order). This hypothesis has not been proved
yet but it turned out that all existing methods constructed at

present support it. Another interesting point is that this conjec-
ture is valid for iterative methods, which are designed for sim-
ple zeros; or for multiple zeros with the known multiplicity.

That is to say, if the multiplicity be unknown, then the conjec-
ture is not anymore supported.

In case of multiple root solvers which are optimal, we can
name the following schemes. Sharifi et al. in [18] proposed

the following optimal fourth-order method

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn þ 1
4
mðm2 þ 2m� 4Þun � 1

4
mðmþ 2Þ2pmvn

� �
� 1þ m4

8ðmþ2Þp2m ðwnÞ2 � 69
64
ðwnÞ3 þ v4n

� �
:

8>>>><
>>>>:

ð2Þ

wherein un ¼ fðxnÞ
f0ðxnÞ, vn ¼

fðxnÞ
f0ðynÞ

, wn ¼ f0ðynÞ
f0ðxnÞ � pm�1 and p ¼ m

mþ2.

Sharma and Sharma in [19] suggested the following quartic-
ally technique

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � m
8
ððm3 � 4mþ 8Þ � ðmþ 2Þ2 m

mþ2

� �m
f0ðxnÞ
f0ðynÞ
ð2ðm� 1Þ

�ðmþ 2Þ m
mþ2

� �m
f0 ðxnÞ
f0ðynÞ
ÞÞ fðxnÞ

f0 ðxnÞ ;

8>>>><
>>>>:

ð3Þ

and Zhou et al. in [30] presented the following scheme with the

same order as (2), (3)

yn ¼ xn � 2m
mþ2

fðxnÞ
f0ðxnÞ ;

xnþ1 ¼ xn � m
8
ððm3 þ 6m2 þ 8mþ 8Þ þm3 mþ2

m

� �2m f0ðynÞ
f0ðxnÞ

� �2
�2m2ðmþ 3Þ mþ2

m

� �m f0ðynÞ
f0 ðxnÞÞ

fðxnÞ
f0 ðxnÞ :

8>>><
>>>:

ð4Þ

The techniques (2)–(4) approximate the multiple roots, when
the multiplicity of the root is available by consuming three

(functional) evaluations. They also possess the optimal order
four and the optimal efficiency index 1.587 in the sense of
Kung–Traub.

For further related developments and applications, see
[16,20,21,23–25], where some other aspects of nonlinear equa-
tion solving by iterative methods have been discussed.

Inspired by these new optimal developments and also by
the use of weight function, we present in the next section, a
general technique for solving nonlinear scalar equations.

3. Construction of the new technique

In this section, we derive a new technique of two-point meth-
ods of order four, requiring three (functional) evaluations per
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