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a b s t r a c t

Vegard's law seldom holds true for most binary continuous solid solutions. When two components form
a solid solution, the atom radii of component elements will change to satisfy the continuity requirement
of electron density at the interface between component atom A and atom B so that the atom with larger
electron density will expand and the atom with the smaller one will contract. If the expansion and
contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold
true. However, the expansion and contraction of two component atoms are not equal in most situations.
The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An
empirical atom model of Vegard's law has been proposed to account for signs of deviations according to
the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Vegard [1] established the linear relationship between the
lattice parameter of a solid solution and concentrations of two
components, known as Vegard's law. However, subsequent experi-
mental investigations show that Vegard's law is seldom accurately
valid. In most situations deviations are observed [2,3], having
either a negative sign (the lattice parameter of the solid solution is
less than the value corresponding to the linear rule) or a positive
one. Consequently, Vegard's law is more an approximation rule
than a precise law. Nevertheless, it is still widely used in materials
science [4,5].

It is well known that three main factors affect the structures of
alloy phases:(1) the atomic size factor resting on the difference in
atomic radii of alloying elements, (2) charge-transfer factor or the
chemical affinity factor which rests on the difference in electro-
negativities of alloying elements, (3) electron concentration factor.
The latter two can be classified as electronic factors. The size factor
has been often investigated on the basis of first-order or second-
order elasticity theory to account for deviations from Vegard's law.
Pines [6] made use of the elastic sphere model for the first time to
deduce the functional dependence of deviations on compressibil-
ities of two components. Then Friedel [7] further demonstrated

that deviations may result from the difference in the compressi-
bilities of component elements by the similar linear elasticity
method. Afterwards, Gschneidner and Vineyard [8] advocated that
deviations lie on the square of the difference in lattice parameters
of two components by means of a new method based on second-
order elasticity theory. Simultaneously, parallel studies based on
density functional theory (DFT) have been carried out to explore
the effect of size factor on deviations. Barrat, Baus, and Hansen [9]
briefly discussed the relationship between DFT and Vegard's law
for the first time. Then Denton and Ashcroft [10] further applied
DFT of nonuniform fluid mixtures to the simple binary mixtures of
hard sphere in fluid-solid transition state and demonstrated the
significance of the size factor in ascertaining lattice constants.
More recent studies by Murphy et al. [11] established a simple
functional dependence of the relative size of the group III (B, Al,
Ga, and In) atoms in MxN1�xAs alloys on the predicted magnitude
of the deviation from Vegard's law in terms of DFT. All these
studies indicated that the simple but very important geometric
factor of different atomic sizes, by itself, has a vital role in
determining the crystal structure of alloys, although they did not
deny the importance of other factors [10].

In the mean time, more and more researchers attached impor-
tance to the roles of electronic factors on deviations. Sarkisov [12]
suggested that deviations lie on the number of valence electrons
of two components on the basis of free electron-gas concept.
Similarly, Shao and Tsakiropoulos [13] investigated TM(3d)–Al
solid solutions and found that deviations are proportionate to
the difference in valence electron densities between Al and the
solvent metals. Almost in the mean time, Xie [14] proposed a
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generalized Vegard's law from viewpoints of Characteristic Crys-
tals Theory. In Xie's model, it is the lattice parameters of char-
acteristic crystals rather than those of component crystals that
satisfy linear additivity. Afterwards, Lubarda [15] incorporated an
apparent size of the solute atom to approximately explain the
electronic interactions between the solvent and solute atoms and
deviations from Vegard's law, finally obtaining better results. In
conclusion, both Sarkisov's model and Xie's model need the
introduction of additional parameters that cannot be determined
independently, and Shao et al. and Lubarda's investigations aimed
at certain alloys. Accordingly, these models still have some limits
for predictions of deviations. Furthermore, the embedded atom
method (EAM) [16] was also used to explore the effect of energy
factor on deviations from Vegard's law. Studies by Hu [17] revealed
that there indeed exists a linear relationship between the volume
shrinkage and the heat of formation for Mg–Re alloys by means of
the analytic modified embedded atom method (MEAM).

In short, deviations closely connected with complex interac-
tions between two components in solid solutions cannot be
explicitly explained by a simple size effect or by a single electronic
factor. Therefore, it may be a better way to incorporate both size
factor and electronic factor together with energy factor into the
exploration of deviations from Vegard's law. In our earlier paper
[18] we ever explored the interaction among these three factors
for solid solution formation. When two components form a solid
solution, the atom volumes of component elements will change
to satisfy the continuity requirement of electron density at the
interface between component atom A and atom B. Here the equili-
brium electron density ρP at the interface can be obtained by one
so-called empirical lever law as follows [18]:

ðρB�ρPÞ � EB ¼ ðρP�ρAÞ � EA ð1Þ

ρA and ρB are electron density of component atoms A and B, EA and
EB are cohesive energy of components A and B. The empirical atom
model of Vegard's law in this paper is just built on such an idea.

2. Theoretical method

In this section, there are three aspects of the problem to be
addressed. The first aspect involves the theoretical foundation of
TFDC electron density. The second aspect relates to the data
processing of lattice parameters of solid solution alloys. The third
part deals with the diatomic model to be used in the empirical
atom model subsequently.

2.1. TFD statistical model and TFDC electron density

Thomas [19] and Fermi [20] proposed a model describing the
electron distribution in the atom. The model is called as TF model
with the mathematical expression as below:

ρðxÞ ¼ Z
4πμ3

Φ

x
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where μ¼ a0ð9π2=128ZÞ1=3, a0 is the Bohr radius, Z is the atomic
number, Φ is TF function with no dimension, x is the atom radius
with no dimension, r¼ μx is the actual atom radius, ρðxÞ is the
electron density. Dirac [21] introduced the electron exchange
action into TF model and established TFD model. TFD model gives
the relationship of the electron density and the atom radius as
follows:

ρðxÞ ¼ Z
4πμ3

εþ Ψ
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where ε is electron exchange item with the expression as

ε¼ 3
32π2

� �1=3
Z�2=3, Ψ is TFD function satisfying famous TFD equa-

tion, namely,

d2Ψ
dx2

¼ x εþ Ψ
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TFD model finds successful application in concerned scientific
fields [22]. With Wigner–Seitz radius given, the electron density at
the corresponding atom radius can be obtained from Eqs. (3) and
(4). In turn, with electron density known, the corresponding
atomic radius can be solved by these two equations. In other
words, Eqs. (3) and (4) can be solved not only directly but also
inversely. It should be stated that the electron density involved in
this paper refers to the electron density at Wigner–Seitz radius.

Meanwhile, Miedema [23] also concluded one empirical rela-
tion to solve electron density at Wigner–Seitz radius according to
bulk modulus and molar volume of alkali metals. On above basis,
Miedama [24] further put forward one cellular model to describe
component changes during the process of alloys' formation.
Subsequently, Kaijia Cheng introduced the boundary conditions
of Miedema model into TFD model and developed improved TFD
model [25], namely, TFDC model. With TFDC model, Cheng [26]
reported nearly the same electron density data as Miedema's. In
addition, these electron density data can also be obtained by
density-functional theory (DFT) [27]. In fact, electron density data
deduced from DFT and those from TFDC model make no differ-
ence, but the solution with TFDC model seems more simple and
needs no commercial softwares.

In this paper, Wigner–Seitz radius and electron density
at Wigner–Seitz radius are used to describe atoms. These two
parameters and cohesive energy data Ec [28] of concerned ele-
ments in crystals are shown in Table 1.

2.2. The data processing method

Lattice parameters of all solid solution alloys are taken from
Pearson's book [29]. The involved binary alloy systems add up to
117 kinds, including 35 continuous solid solutions and 82 limited
solid solutions. All a–C graphs for solid solution alloys are fitted to
quadratic polynomials with the form of a¼ β1C

2þβ2Cþβ3, where
a is the lattice parameter of the solid solution alloy, C is the atomic
concentration of the solute. If β140, the lattice parameter of the
practical solid solution takes on negative deviation from Vegard's
law. On the contrary, if β1o0, the lattice parameter of the practical
solid solution takes on positive deviation from Vegard's law. Thus,
we can obtain statistic results of deviations in solid solution alloys.

Table 1
Atomic parameters of component crystals, including the atomic number Z, Wigner–
Seitz radius rWS (10�10m), electron density ρ (1029/m3), and Ec cohesive energy
(kJ/mol).

Z Element rWS ρ Ec Z Element rWS ρ Ec

22 Ti 1.6136 1.3266 468 46 Pd 1.5224 2.6518 376
23 V 1.4901 2.0361 512 47 Ag 1.5982 2.0851 284
24 Cr 1.4202 2.6436 395 51 Sb 1.9393 0.7496 265
26 Fe 1.4119 2.8474 413 73 Ta 1.6288 2.3283 782
27 Co 1.3846 3.1987 424 74 W 1.5573 2.9688 859
28 Ni 1.3780 3.3425 428 77 Ir 1.5015 3.6555 670
29 Cu 1.4119 3.0273 336 78 Pt 1.5336 3.2948 564
40 Zr 1.7746 1.0992 603 79 Au 1.5932 2.7136 368
41 Nb 1.6237 1.7923 730 81 Tl 1.8962 1.0536 182
42 Mo 1.5504 2.3062 658 82 Pb 1.9359 0.9398 196
45 Rh 1.4873 2.9535 554 83 Bi 2.0363 0.7006 210
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