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a b s t r a c t

Radiant emittance of dimers and ensembles of particles consisting of gold, graphite and silica glass
nanoparticles in vacuum is studied numerically based on the fluctuation-electromagnetic theory. The
presence of neighboring particles of the same temperature causes an oscillating character of radiant
emittance (per one particle) depending on the particle size, interparticle distance and temperature. We
conclude that an ensemble of particles could be a much more intense source of thermal radiation than an
equivalent solid body with the same outer surface area. Alternatively, when the neighboring particles
create a significant “screening effect” (silica), an ensemble of particles could be a very good heat
protector.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A role of paramount importance in nanoelectronics, nanopho-
tonics, and photovoltaics is played by heat dissipation. Radiative
heat exchange processes provide a convenient way of handling
the excess of heat produced in these devices [1]. On the other
hand, there is a great interest in studying the properties of high-
temperature clusters [2] and dust particles in fusion devices [3]
where the processes of radiative heat transfer between the
particles and the surrounding vacuum are essential in the energy
balance. However, in describing thermal vacuum radiation of small
particles of submicron dimensions the Planck's law of blackbody
radiation is not sufficient.

As is well known, blackbody radiation mediates heat exchange
between bodies placed in vacuum and separated by large distance d
compared to the thermal wavelength λT ¼ 2πℏc=kBT . For the two
parallel plates of area S that leads to the radiative heat transfer rate
(RHT) corresponding to the Stefan–Boltzmann law WSB ¼ π2
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ST4

independent of d. However, at doλT the rate is enhanced greatly
due to the involvement of evanescent waves [4,5] and satisfies
a 1=d2 dependence at small distances d, as shown in the experi-
ments [6,7].

In the case of two spherical particles of radius r separated by
a small vacuum gap of width d, a leading near-field contribution
to RHT obeys the law 1=ð2rþdÞ6 [8–10]. In Ref. [11], the authors
have reconsidered this problem within the assumption of dipolar
response by taking into account radiative corrections and electro-
magnetic crossed terms mixing the electric and magnetic particle
responses. In particular, it was shown that crossed terms could

play a dominant role in heterogeneous structures, and become less
important in homogeneous ones when calculating RHT between
the two particles of different temperature.

In this regard, no attention to date was paid to thermal radiation
emitted into the surrounding vacuum provided that neighboring
particles have the same temperature. Since the near-field interac-
tions can be significant, the presence of another particle (or an
ensemble of particles) affects thermal radiation of each particle
when the ensemble and vacuum environment are characterized by
different temperatures. An intriguing question is whether the
energy radiated by a particle be higher than the corresponding
black-body limit or not, and how the answer depends on material
properties, the size and spatial configuration of particles. It is worth
noting that the finite-size effect of thermal radiation can be traced
even within the simplest quantum approach, since there exists a
non-zero minimum for the radiation frequency due to the finite size
of the body [12]. Thermal radiation of nanoparticles was also
considered in Ref. [13] using a simplified model approach.

In this work, based on the fluctuation-electromagnetic theory,
we calculate RHT (W) for a spherical particle of radius r and
temperature T1 which is a part of dimer or an ensemble of particles
at temperature T1 embedded in the environment at temperature T2.
We use the assumption of dipolar response within the Mie theory
[14] and tabulated dielectric characteristics of materials from
Ref. [15]. Despite that net RHT between the particles is absent, each
of them emits (absorbs) thermal photons into (from) vacuum
background and the rate of this process depends on a spatial
configuration of particles embedded in vacuum. In the simplest case
of two particles (dimer) separated by a center-to-center distance
RZ2r, the cooperative effect and RHT between the particles and
vacuum environment prove to be the functions of R.

Numerical calculations were performed for gold, graphite and
silica glass (SiO2) particles with radii ranging from 0.1 to 1�3 μm
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in the temperature range from 100 K up to the melting tempera-
ture of the corresponding bulk materials. We calculated a normal-
ized RHT (blackness factor) W=WSB depending on the particle
radius and temperature. The sharp difference in the dependence
of the blackness factor on temperature and radius was found for
the particles of gold and graphite on the one hand, and SiO2

particles on the other hand. In the former case, the maximum ratio
of W=WSB is observed for particles with a radius of 0:15�0:35 μm,
increasing with temperature. For graphite particles, W=WSB

reaches 0.92 at T ¼ 3000 K, but for gold particles the highest
blackness factor does not exceed 0.084 at T ¼ 1337 K. Interestingly,
the blackness factor for SiO2 particles reaches the maximum value
of 0.55 at a much greater particle radius of 3:4 μm and a much
lower temperature of 223 K.

In the case of dimers, the dependence of W=WSB on the
distance R between the particles demonstrates an oscillating
character. The presence of a neighboring particle may lead either
to a decrease of RHT (“screening effect”), or to an increase of RHT
(“mirror effect”), depending on the particle radius and tempera-
ture. The highest screening (up to 9%) is found for SiO2 particles
of radius 1 μm at a temperature of 600 K, while the highest “mirror
effect” does not exceed 3% for all types of the particles.

For an ensemble of N closely packed nanoparticles, their total
RHT in vacuum rises proportionally to N, while the black body
radiation from a solid body with the same outer radius rises as
N2=3. Therefore, at Nb1 the ensemble of nanoparticles should be a
much more intense source (absorber) of thermal radiation than an
equivalent solid body of the same size.

2. Theory

Fig. 1 shows the simplest system under study, namely the case
of two identical isotropic spherical particles 1 and 2 in the vacuum
environment. We assume that the particles are nonmagnetic
and have the frequency-dependent electric and magnetic dipole
polarizabilities α1;2

ðeÞðωÞ, α1;2ðmÞðωÞ. Within the framework of fluc-
tuation electrodynamics, the rate of heating (cooling) of each
particle (particle 1 for definiteness) can be represented in the
form [16]

_Q ¼ 〈 _d1ðtÞEðr1; tÞ〉þ〈 _m1ðtÞBðr1; tÞ〉

¼
Z þ1

�1

dω′
2π

dω
2π

ð� iωÞ exp ½� iðωþω′Þ�U
½〈d1;iðωÞEiðr1;ω′Þ〉þ〈m1;iðωÞBiðr1;ω′Þ〉� ð1Þ

Here d1ðtÞ;m1ðtÞ�electric (magnetic) dipole moments of particle
1, Eðr1; tÞ;Bðr1; tÞ�spontaneous electric and magnetic field at the
location point r1 of particle 1, d1;iðωÞ;m1;iðωÞ; Eiðr1;ω′Þ;Biðr1;ω′Þ are
the corresponding projections of the Fourier-transforms, points
over variables indicate the time derivatives. It should be noted that
all the aforementioned quantities include spontaneous and
induced components of the dipole moments and fields. More
details are given in Ref. [17], where we have calculated the heat
transfer and other important characteristics in the system of two
rotating particles placed in vacuum. The basic formula which
we need follows from equation (30) in Ref. [17] assuming that
Ω¼ 0 (rotation frequency) and making use the replacements

T3-T2; T2-T1:
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where Dikðω;RÞ�components of the retarded Green's function of
photons in vacuum (n¼ R=R, i; k¼ x; y; z), the term e-mð Þ is
identical to the first two terms and describes magnetic polariza-
tion effects, while the last term e;mð Þ corresponds to the crossed
magnetic–electric polarization contributions. As was shown in Ref.
[11], the crossed terms can be significant in heterogeneous metal–
dielectric systems. Here we consider only the case of metal–metal
and dielectric–dielectric combinations neglecting these crossed
terms. Moreover, Eq. (2) does not include the processes of multiple
scattering, since they are also negligibly small [11]. If the particles
have different temperatures, Eq. (2) involves an extra term
describing direct heat exchange between the particles [8–11].
In addition, it is worth noting that the first term in Eq. (2)
corresponds to the limiting case R-1 or if we neglect the
cooperative effect of another particle [10], which is described by
the second term of Eq. (2).

After substituting Eq. (3) in Eq. (2) the second term of Eq. (2)
takes the form

_Q
ð2Þ ¼ � 2ℏ

π

Z 1

0
dωωIm α1

ðeÞðωÞ
h
Reα2ðeÞðωÞf 1ðωR=cÞ

� Im α2
ðeÞðωÞf 2ðωR=cÞ

i
coth
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f 1ðxÞ ¼ 2ðx3�3xÞ cos ð2xÞþðx4�5x2þ3Þ sin ð2xÞ ð5Þ

f 2ðxÞ ¼ 2x4�4x2þ6�2ðx4�5x3þ3Þ cos ðxÞ2þ2ðx3�3xÞ sin ð2xÞ
ð6Þ

Therefore, radiant emittance W of particle 1 is described by a sum

of the first term in Eq. (2), involving direct RHT (referred to as _Q
ð1Þ
)

between the particle and vacuum, and _Q
ð2Þ � indirect RHT due to

the presence of the second particle (the second term in Eq. (2)).

Assuming that _Q
ð1Þo0, the sign of _Q

ð2Þ
corresponds to the “mirror

effect” ( _Q
ð2Þo0) or “screening effect” ( _Q

ð2Þ
40) at a given R.

For an ensemble of N equidistant closely packed particles of the
same radius r and temperature T1, neglecting by the second and
higher order correlations, as well as the surface effects, a total
radiation power of the ensemble is given by

WN �N _Q
ð1Þ þ12Q ð2Þ

� 	
ð7Þ

In numerical calculations, it is convenient to introduce the black-
ness parameter b¼W=WSB or bN ¼WN=WSB , relating to a single
particle or to an ensemble of N particles, where the black body
radiant emittance WSB is given by

WSB ¼
π3

15
kB

3

ℏ3c2
R0

2T4 ð8Þ

with allowance for R0 ¼ r in the former case and R0 ¼ RN1=3; RZ2r
in the latter case.Fig. 1. A scheme of particle configuration.
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