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a b s t r a c t

Electronic conduction through quantum dots undergoing Jahn–Teller distortion is studied utilizing a
model presented recently in connection with investigation of possible magnetovoltaic effect in this
system. The quantum dot connected to two metallic leads is described by the single impurity Anderson
model (SIAM) Hamiltonian along with two additional terms describing the Jahn–Teller distortion and an
applied magnetic field. The self-consistent calculation shows that the Jahn–Teller (J–T) order parameter
which is a measure of the splitting of the degenerate dot level is maximum at zero temperature and
smoothly goes to zero at the structural transition temperature, Ts. The conductance is greatly suppressed
by the J–T distortion at low temperatures, slowly increases and attains a maximum at Ts, above which it
shows a slow decrease. When plotted as a function of the energy of the dot level, the conductance shows
two peaks corresponding to the two split J–T levels at temperatures below Ts, which further develops
into a four peak structure in the presence of a magnetic field.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A quantum dot, being an agglomeration of a small number of
atoms, behaves like a large atom with quantized energy levels
with confined electrons [1,2]. If one attaches metallic leads to the
two ends of the quantum dot and applies a voltage across it, the
electrons from the conduction band of the lead can tunnel through
the barrier at the boundary and get into the localized level of the
dot and tunnel to the other lead, resulting in an electronic
transport across the quantum dot.

The experimental study of the conductance through a quantum
dot has revealed many interesting features [3–5]. For these
experiments the quantum dots were fabricated by putting suitable
metallic gates in the inversion layer of Silicon [3] and in GaAs
heterostructures [4] so as to create a narrow channel in a two
dimensional electron gas. The measured conductance showed per-
iodic oscillations with applied gate voltage in both the experiments.

The attempts to interpret these oscillations resulted in attributing
them to the presence of pinned charge density waves (CDW) in the
one dimensional electron channel in the Si inversion layer [3] and
the transport to the sliding of the pinned CDW every time a single
electron is added to the channel. In the measurement of the GaAs
heterostructure the authors were able to correlate the period of the
oscillations with the length of the narrow channel.

Electronic conduction in a quantum dot can be described in
terms of the single impurity Anderson model (SIAM) [6]; originally
proposed in the context of the study of the appearance of a
magnetic moment when a transition metal impurity atom is
placed in a nonmagnetic host metal. This model was adapted to
the problem of electrical transport in a quantum dot [5] connected
to metallic leads. The quantum dot is characterized by its localized
levels due to confinement. Each of these levels when doubly
occupied by the electrons, will result in the strong on-site
Coulomb repulsion between them. The Fermi sea of the electrons
in the left and right metallic leads which are assumed to be ideal,
replaces the free electrons of the host metal in the original
Anderson model. These electrons can tunnel through the barriers
into the localized dot level because of the hybridization of the
quantum dot level and the lead states.

Recently there has been a lot of interest in the study of
quantum dots with a magnetic impurity [7–14] because of the
recent surge of interest in the phenomenon of ‘Spintronics’ or spin
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electronics. In order to deal with this problem, the Anderson
model has been further generalized to include an additional
interaction term in the Hamiltonian describing the coupling of
the spin of the dot electrons with the impurity spin in the form of
an exchange (s–d) interaction [14].

An experimental realization of the fact that a quantum dot
essentially consists of a cluster of atoms to which metallic leads
can be attached was reported in Ref. [11] in the context of studying
the Kondo effect in a gold quantum dot by embedding magnetic
impurities in the metallic leads. It is well known that a small
cluster of atoms could have many isomeric structures [15] differing
in energy only by a small amount, hence becoming susceptible to
the possibility of undergoing structural transformations. A possible
electronic mechanism by which such a structural change can be
brought about in a quantum dot could be through the Jahn–Teller
effect, if the ground state of the dot happens to be degenerate. If
the gain in electronic energy can overcome the cost in elastic
energy due to the lattice distortion, then the structural phase
transition will be stabilized below a critical temperature Ts and the
levels will split.

In a recent publication [16] we extended the Anderson model
to study the effect of the interplay between the Coulomb potential
and an applied magnetic field in a quantum dot capable of
undergoing Jahn–Teller distortion and showed that under suitable
conditions this interplay may lead to the production of an
oscillatory voltage which we called the magnetovoltaic effect.

In this paper we use the same model to study the effect of
Jahn–Teller distortion and the role of magnetic field on the
electrical conductance of a quantum dot capable of undergoing a
structural phase transition. Results of this study have been
reported in recent conference proceedings [17,18].

In Section 2 the Hamiltonian for the quantum dot undergoing
structural transition with two metallic leads attached to it is first
set up. We then calculate the Green's function for the electrons in
the quantum dot by using the equation of motion technique [19].
This Green's function is then used in the Landauer type formula to
obtain conductance through the quantum dot [20,21]. Results of
our calculation are presented in Section 3. The final conclusions of
the paper are drawn in Section 4.

2. Theory

We have modeled our quantum dot connected to two ideal
metal leads, by the single impurity Anderson model (SIAM)
Hamiltonian [6] together with two additional terms representing
the structural transition due to Jahn–Teller distortion, and the
external magnetic field. The localized levels of the quantum dot
correspond to the electronic levels of the impurity atom, and the
Fermi sea of the electrons in the left and right metallic leads
represents the free electrons of the host metal in the original
Anderson model. These electrons can tunnel through the barriers
into the localized dot level because of the hybridization of the two
[5]. The dot level being degenerated may be possible to avoid their
double occupancy by electrons and hence the Coulomb potential
when two electrons tunnel from the lead into the dot. Therefore, a
mean field treatment of the onsite Coulomb repulsion term in the
dot Hamiltonian may be justified as a first approximation. The
Hamiltonian of the system is written in the mean field approx-
imation as

HMF
T ¼ ∑

L;R

α;ks
εαksc

†
αkscαksþ ∑

1;2

is
ɛisnis

þ ∑
1;2;L;R

iα;ks
Vαiðc†αksdisþd†iscαksÞ ð1Þ

The first term on the right hand side describes the electrons in the
left and the right leads, the second term contains contributions
from the electronic states of the quantum dot in the mean field
approximation, the applied magnetic field, and the Jahn–Teller
distortion. The third term represents the hybridization between
the lead electrons and the dot electrons. In this equation α¼ L;R
stands for the left and right leads, εαks the energy of the electron in
the α-th lead having wave vector k and spin s, and cαksðc†αksÞ are
the annihilation (creation) operators for these electrons. The index
i¼1,2 represents the two degenerate levels of the quantum dot
where ɛis is the effective energy of the localized level and disðd†isÞ
the annihilation (creation) operator for the dot electron in the i-th
level with spin s, and nis ¼ d†isdis is the number operator for the
dot electrons at the level i with spin s. The hybridization matrix
element is Vαi. In Eq. (1) the spin dependent energies of the dot
levels are given by

ɛis ¼ ðɛiþU〈ni�s〉�zshÞ ð2Þ
where ɛi ¼ 1;2 ¼ ðɛd7ΔJT Þ are the two split degenerate levels with a
Jahn–Teller splitting of 2ΔJT . The second term on the right hand
side of this equation is the intra-site Coulomb repulsion between
the dot electrons treated in the mean field approximation, U being
the intra-level Coulomb repulsion parameter. The third term in
Eq. (2) is the contribution from the magnetic field where h is the
magnetic field energy and for s¼ ↑ð↓Þ we have the corresponding
values zs ¼ 71. Note that Eq. (1) has a simple form involving only
quadratic terms in the annihilation (creation) operators which can
be solved exactly.

The Jahn–Teller order parameter ΔJT can be calculated from

ΔJT ¼ �Gð〈n1↑〉þ 〈n1↓〉� 〈n2↑〉�〈n2↓〉Þ; ð3Þ
where G is the renormalized electron–phonon coupling constant.

The calculation of the average value of the number operator
with spin s, i.e. 〈nis〉 appearing in the above equations involves the
spectral density function which is given by the imaginary part of
the retarded single particle Green's function for the electrons in
the quantum dot. This Green's function has been calculated for this
Hamiltonian by using the equation of motion method of the
double time Green's function [19] and has been found to be

Gis;isðωÞ ¼ 1
2π½ω�ɛis� iγi�

; ð4Þ

where γi represents the coupling of the two dot levels to the
electrons in the leads and is related to V2

αi via the density of states
of electrons ðγαi ¼ πjV2

αijρðωÞÞ in the leads.
The average value of the number operator with spin s, i.e. 〈nis〉

can be expressed in terms of this Green's function as

〈nis〉¼
Z þ1

�1
dωf ðωÞ2 Im Gis;isðωÞ

¼ 1
π

Z þ1

�1
dωf ðωÞ γi

½ðω�ɛisÞ2þγ2i �
ð5Þ

where f ðωÞ is the Fermi distribution function.
We have also calculated the conductance for the system by

using the Landauer type formula [20,21]

G¼ 2e2

h
∑
is
γi

Z þ1

�1
dω �df ðωÞ

dω

� �
Im Gis;isðωÞ

¼ 2e2

h

� �
∑
is
γ2i

Z þ1

�1
dωð� f ′ðωÞÞ

� 1
½ðω�ɛisÞ2þγ2i �

( )
ð6Þ

Recalling the definition of ɛis as given by Eq. (2) it is evident
that the average 〈nis〉 depends on the average occupation of the
level i by electrons with spin �s i.e., 〈ni�s〉 and vice versa. Hence
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