
ORIGINAL ARTICLE

Navier–Stokes flow in converging–diverging

distensible tubes

Taha Sochi

University College London, Department of Physics & Astronomy, Gower Street, London WC1E 6BT, United Kingdom

Received 1 July 2014; revised 12 March 2015; accepted 31 March 2015

Available online 27 April 2015

KEYWORDS

1D flow;

Navier–Stokes;

Distensible tubes;

Converging–diverging tubes;

Irregular conduits;

Non-linear systems

Abstract We use a method based on the lubrication approximation in conjunction with a residual-

based mass-continuity iterative solution scheme to compute the flow rate and pressure field in dis-

tensible converging–diverging tubes for Navier–Stokes fluids. We employ an analytical formula

derived from a one-dimensional version of the Navier–Stokes equations to describe the underlying

flow model that provides the residual function. This formula correlates the flow rate to the bound-

ary pressures in straight cylindrical elastic tubes with constant-radius. We validate our findings by

the convergence toward a final solution with fine discretization as well as by comparison to the

Poiseuille-type flow in its convergence toward analytic solutions found earlier in rigid converg-

ing–diverging tubes. We also tested the method on limiting special cases of cylindrical elastic tubes

with constant-radius where the numerical solutions converged to the expected analytical solutions.

The distensible model has also been endorsed by its convergence toward the rigid Poiseuille-type

model with increasing the tube wall stiffness. Lubrication-based one-dimensional finite element

method was also used for verification. In this investigation five converging–diverging geometries

are used for demonstration, validation and as prototypes for modeling converging–diverging

geometries in general.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The flow of fluids in converging–diverging tubes has many sci-
entific, technological and medical applications such as trans-

portation in porous media, filtration processes, polymer
processing, and pathological stenoses and aneurysms [1–13].
There are many studies about the flow in converging–diverging
rigid conduits [14–21] and distensible conduits with fixed cross

sections [22–28] separately as well as many other different

geometries and fluid and conduit mechanical properties [29–31].
There is also a considerable number of studies on the flow in
converging–diverging distensible conduits; although large part
of which is related to medical applications such as stenosis and

blood flow modeling [32–42].
Several methods have been used in the past for investigating

and modeling the flow in distensible converging–diverging

geometries; the majority are based on the numerical discretiza-
tion methods such as finite element and spectral methods
although other approaches such as stochastic techniques have

also been employed. However, due to the huge difficulties asso-
ciating this subject which combines tube wall deformability
with convergence–divergence non-linearities, most of these
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studies are based on substantial approximations and modeling
compromises. Moreover, they are usually based on very com-
plex mathematical and computational infrastructures which

are not only difficult to implement and use but also difficult
to verify and validate. Also, some of these methods, such as
stochastic techniques, are computationally demanding and

hence they may be prohibitive in some cases. Therefore, sim-
ple, reliable and computationally low cost techniques are
highly desirable where analytical solutions are not available

due to excessive difficulties or even impossibility of obtaining
such solutions which is the case in most circumstances.

In this paper we propose the use of the lubrication approx-

imation with a residual-based non-linear solution scheme in
association with an analytical expression for the flow of
Navier–Stokes fluids in straight cylindrical elastic tubes with
fixed radius to obtain the flow rate and pressure field in a num-

ber of cylindrically-symmetric converging–diverging geome-
tries with elastic wall mechanical properties. The proposed
method combines simplicity, robustness and ease of implemen-

tation. Moreover, it produces solutions which are very close to
any targeted analytical solutions as the convergence behavior
in the investigated special cases reveals.

Although the proposed method is related to a single
distensible tube, it can also be extended to a network of inter-
connected distensible tubes with partially or totally converg-
ing–diverging conduits by integrating these conduits into the

network and giving them a special treatment based on the pro-
posed method. This approach, can be utilized for example in
modeling stenoses and other types of flow conduits with irreg-

ular geometries as part of fluid flow networks in the hemody-
namic and hemorheologic studies and in the filtration
investigations.

The method also has a wider validity domain than what
may be thought initially with regard to the deformability char-
acteristics. Despite the fact that in this paper we use a single

analytical expression correlating the flow rate to the boundary
pressures for a distensible tube with elastic mechanical proper-
ties, the method can be well adapted to other types of mechan-
ical characteristics, such as tubes with viscoelastic wall

rheology, where different pressure-area constitutive relations
do apply. In fact there is no need even to have an analytical
solution for the underlying flow model that provides the basic

flow characterization for the discretized elements of the con-
verging–diverging geometries in the lubrication approxima-
tion. What is actually needed is only a well defined flow

relation: analytical, or empirical, or even numerical [43] as long
as it is viable to find the flow in the discretized elements of the
lubrication ensemble using such a relation to correlate the flow

rate to the boundary pressures.
There is also no need for the geometry to be of a fixed or

regular shape as long as a characteristic flow can be obtained

on the discretized elements, and hence the method can be
applied not only to axi-symmetric geometries with constant-
shape and varying cross-sectional area in the flow direction
but can also be extended to non-symmetric geometries with

irregular and varying shape along the flow direction if the flow
in the deformable discretized elements can be characterized by
a well-defined flow relation. The method can as well be applied

to non-straight flow conduits with and without regular or
varying cross-sectional shapes such as bending compliant
pipes.

2. Method

The flow of Navier–Stokes fluids in a cylindrical tube with a

cross-sectional area A and length L assuming a slip-free incom-
pressible laminar axi-symmetric flow with negligible gravita-
tional body forces and fixed velocity profile is described by

the following one-dimensional system of mass continuity and
linear momentum conservation principles
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Nomenclature

a correction factor for axial momentum flux

b stiffness coefficient in the pressure-area relation
j viscosity friction coefficient
l fluid dynamic viscosity
m fluid kinematic viscosity

q fluid mass density
1 Poisson’s ratio of tube wall
A tube cross-sectional area at actual pressure

Ain tube cross-sectional area at inlet
Ao tube cross-sectional area at reference pressure
Aou tube cross-sectional area at outlet

E Young’s elastic modulus of the tube wall
f flow continuity residual function
ho tube wall thickness at reference pressure
J Jacobian matrix

L tube length
N number of discretized tube nodes

p pressure

p pressure vector
pi inlet pressure
po outlet pressure
Dp pressure drop

Dp pressure perturbation vector
Q volumetric flow rate
Qa analytic flow rate for rigid tube

Qe numeric flow rate for elastic tube
Qr numeric flow rate for rigid tube
r residual vector

R tube radius
Rmax maximum unstressed tube radius
Rmin minimum unstressed tube radius
t time

x tube axial coordinate (inlet at x ¼ 0 and outlet at
x ¼ L)
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