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a b s t r a c t

The self-diffusion coefficients, D, of liquid Fe at different temperatures have been investigated using hard
sphere (HS) theory and universal scaling laws (USLs). Inter-ionic interaction is derived from both
pseudopotential proposed by Brettonet–Silbert (BS) and many body potential obtained from embedded
atom method (EAM). Temperature dependent effective HS diameter, sðTÞ, and excess entropy, Sex, are the
premier ingredients of the study. The former ingredient is calculated using both variational modified
hypernetted chain, VMHNC, integral equation theory and Linearized Weeks–Chandler–Andersen, LWCA,
thermodynamic perturbation theory together with an empirical relation of Protopapas et al. (1973) [2]
whereas the later one is calculated using VMHNC theory alone, with BS and EAM potentials. We observe
that D increases with increasing temperatures. The obtained results are compared with those predicted
by Protopapas et al. The comparison suggests that USL of Dzugutov and HS theory with BS potential are
better choices to predict D(T) of liquid Fe.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The physics of diffusion in the condensed state attracted
scientists for its multiple technological applications; for example,
binary solidification and glass formation. Industrially important
many reactions are controlled by diffusion of the reactant species.
When temperature increases, the metal in the liquid state
becomes more sensitive to the external perturbations such as
convection effects [1]. In this situation, usually, experimental
techniques fail to measure diffusion coefficient, D. Therefore,
theoretical understanding on diffusion process for high tempera-
ture melts is required.

Despite the experimental limitations in measuring D, the study
of diffusion of liquid metals at high melting temperature is not a
new issue. Several attempts have been made using different
theories [2–5] and computer simulation methods [6–14].
Temperature variation also has the significant influence on diffu-
sion process of liquid metals. However, a few studies [2,4,15–18]
have been reported in this regard where liquid Fe received little
attention. It should be mentioned here that, Korkmaz et al. [4]
used an evanescent pseudopotential proposed by Fiolhais et al.
[19] and Ornstein–Zernike integral equation with Rogers–Young

closure up to a few temperature limits (near melting) to study the
temperature dependent D(T) for liquid Fe.

From the early 70s to the present decade, various studies have
been reported on the diffusion coefficients of liquid transition
metal from various point of view. For example, Rice [20] and
Vadovic and Colver [21] proposed empirical formulas based on
hard sphere (HS) interaction, Rosenfeld [6] and Dzugotov [8]
proposed universal scaling laws (USLs) relate reduced diffusion
coefficients and excess entropy involving liquid structure. After-
wards, these USLs were revised and thoroughly studied by several
authors [11,12,16,4,17,18,22] to determine diffusion coefficients of
liquid metals. The outcome of those studies is as follows: some
reports [11,12,16] show that the USL does not hold for liquid Si;
and also deviates at high temperatures [17,18] or at low density
state [22]. Therefore, the present work is a great test for the
applicability of the USL for liquid Fe at temperatures far from the
melting.

In the 80s both variational modified hypernetted chain,
VMHNC and Linearized Weeks–Chandler–Andersen, LWCA, the-
ories were developed and in the 90s those were applied to
describe liquid structure factor, especially, for liquid transition
metals [23–25] and proved to be successful. Beside those, to
describe interionic interactions Bretonnet–Silbert (BS) pseudopo-
tential [26] and many body potential from embedded atom
method (EAM) are proved to be suitable for liquid transition
metals both in solid [27,28] and liquid phase [29,9,10,30]. To the
best of our knowledge, no theoretical study on temperature
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dependent diffusion coefficients of liquid Fe is reported yet which
shows the role of potentials from different aspects.

In this study, we therefore take an attempt to calculate
diffusion coefficient of liquid Fe using BS and EAM potentials
along with both VMHNC and LWCA theories. To calculate diffusion
coefficients, HS theory and USLs have been employed. One of the
main aims of the study is to examine the role of potentials
responsible for the best description of the diffusion of liquid Fe
as a representative one of the transition metals. The layout of this
paper is as follows: in Section 2 we describe theories relevant to
the present calculation. Section 3 is devoted to the results and
discussion. We summarize the report with some concluding
remarks in Section 4.

2. Theories

2.1. Diffusion coefficients

Diffusion coefficients can be studied using different theoretical
methods such as linear trajectory theory, small-step diffusion
theory, hard-sphere theory, empirical and semi-empirical formu-
las [3], and universal scaling laws (USLs) [6,8]. An empirical
formula based on Hard-Sphere (HS) interaction reads as [21]

D¼ 0:183s
π

kT

� �1=2 ηm=η

0:9385ðTmρ=TρmÞ−1
ð1Þ

where η¼ 1
6 πs

3n, the packing fraction, s the HS diameter, n the
number density and T the temperature of investigation. In the
same decade, based on these macro-parameters, n and T, Rosen-
feld [6] proposed an important connection between dynamic
diffusion and structural internal entropy of some liquid systems
which shows the following scaling law:

Dn

R ¼ 0:6e0:8Sex ð2Þ
where Dn

R and Sex are the reduced diffusion coefficients and excess
entropy of the systems, respectively. The reduced diffusion coeffi-
cients and excess entropy in Eq. (2) are defined as

Dn

R ¼D
n1=3

ðkBT=mÞ1=2
ð3Þ

Sex ¼ −2πn
Z ∞

0
fgðrÞln½gðrÞ�−½gðrÞ−1�gr2 dr ð4Þ

where g(r) is the pair correlation function approximated from the
two-body contribution.

Dzugutov [8] proposed another universal scaling law (USL)
based on the microscopic reduction parameters, collision fre-
quency, Γ, and inter-particle distance, s, which is as follows:

Dn

Z ¼ 0:049eSex ð5Þ
where excess entropy is defined as Eq. (4) and Dn

Z is defined as

Dn

Z ¼D
1

Γs2
ð6Þ

where collision frequency Γ according to Enskog [31] is

Γ ¼ 4s2gðsÞnðπkBT=mÞ1=2: ð7Þ
In Eq. (7), gðsÞ is the radial distribution function evaluated at

hard sphere diameter, s. Eqs. (1), (3), and (6) in this study are used
to determine diffusion coefficients of liquid Fe.

2.2. The effective pair potential

2.2.1. Bretonnet and Silbert (BS) potential
Bretonnet and Silbert (BS) have proposed a model potential for

liquid transition metals [26]. This model potential includes the

contribution of s–p and d-bands and has the following form:

wðrÞ ¼
∑
2

m ¼ 1
Bm exp −

r
ma

� �
for roRc

−
Zse2

r
for r4Rc

8>>><
>>>:

ð8Þ

where a the softness parameter and Rc the core radius are used to
control the form of potential. Zs the s-electron occupancy number.
The unscreened form factor can be written as

w0ðqÞ ¼ 4πna3
B1J1

ð1þ a2q2Þ2
þ 8B2J2

ð1þ 4a2q2Þ2

" #
−

4πnZse2

q2 cosðqRcÞ
ð9Þ

where the expressions for Bm and Jm are given in Ref. [26].
The effective inter-ionic interaction is

vðrÞ ¼ Z2
s

r
1−

2
π

Z
FNðqÞ sinðqrÞ dq

� �
ð10Þ

where FN(q) is the normalized energy wave number characteristic

FNðqÞ ¼
q2

4πnZse2

� �2

w2
0ðqÞ 1−

1
ϵðqÞ

� �
½1−GðqÞ�−1: ð11Þ

The dielectric screening function ϵðqÞ is given by

ϵðqÞ ¼ 1−
4πe2

q2

� �
χðqÞ½1−GðqÞ�: ð12Þ

Here χðqÞ is the Lindhard function and G(q) is the local-field
correction as developed by Ichimaru and Utsumi [32].

2.2.2. Embedded atom method
This model potential is developed based on the concept of

Stott–Zaremba [33]. In the model, an atom is considered to be
embedded in the host consisting of all other atoms. The energy
required to embed an atom into the local electron density together
with a short ranged core–core repulsion term gives [34]

E¼∑
i
FiðρhðriÞÞ þ

1
2
∑
i≠j
ϕðrijÞ ð13Þ

where Fi is the embedding energy for placing the ith atom into the
host electron density of ρh at position ri; ϕ is a short ranged doubly
screened pair interaction between ith and jth atoms separated by a
distance rij. The host electron density ρhðiÞ is approximated by
linear superposition of atomic electron densities

ρhðiÞ ¼∑
j
ρaj ðrijÞ ð14Þ

where ρaj is the atomic density of the jth atom at distance rij from
the nucleus.

The first term on the right of Eq. (13) can be approximated by
taking first two terms of Taylor series expansion about the average
host electron density, ρ [30]. The obtained approximated EAM
energy is as follows [34]:

E¼NEðρÞ þ 1
2

∑
ði≠jÞ

vðrijÞ ð15Þ

where

EðρÞ ¼ FðρÞ−ρF ′ðρÞ ð16Þ
and

vðrÞ ¼ ϕðrÞ þ 2F ′ðρÞρaðrÞ þ F″ðρÞ½ρaðrÞ�2 ð17Þ
where v(r) represents the effective pair potential; F ′ðρÞ and F″ðρÞ
are the first and second derivatives of embedding function
evaluated at ρ, respectively. The parameters, required for EAM
potential, are chosen from the work of Bhuiyan et al. (the details
are given in Ref. [34]).
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