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a b s t r a c t

We study the entanglement of a two-qubit system in a superconducting quantum dot (SQD) lattice in

the presence of magnetic flux and gate voltage. The ground state is always in a maximally entangled

Bell state for homogeneous gate voltage. In the presence of inhomogeneous gate voltage, the half-

integer magnetic flux quantum, completely washes out the entanglement of the system at zero

temperature. The entanglement is much higher for the Mott insulating phase. At finite temperature,

collapse of entanglement occurs for wider region of magnetic flux.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A very intense research activities have started in recent years
involving an interaction between the subjects of quantum infor-
mation science and quantum many body physics [1–5]. Quantum
entanglement is the pivot of quantum information science, a truly
unique feature of quantum mechanical systems, it has no classical
analogue. Entanglement implies non-local correlations between
particles in quantum many body systems. The quantum phase
transition is one of the elegant phenomena of quantum many
body system associate with different physical phenomena of that
system. It has been observed recently that the quantum phase
transition of the system is also associated with the quantum
entanglement physics of the system and it has been observed that
the entanglement of the quantum system extends over the
macroscopic distances as ordinary correlation do. For example,
let us consider a many body interacting quantum spin system.
The ground state wave function changes qualitatively in a
quantum phase transition. Therefore, one should be curious to
see how the quantum entanglement changes as the transition
point is traversed. The fidelity is an important concept to measure
the quantum entanglement in the system. The fidelity typically
drops in an abrupt manner at a quantum critical point indicating
a dramatic change in the nature of the ground state wave function
[6–11].

We have been motivated by the extensive studies of entangle-
ment physics and interesting results in spin system [12–25]. We

decided to apply this concept of study in the different disciplines
of quantum condensed matter many-body system. Here we study
the entanglement physics of two qubit in superconducting quan-
tum dot lattice. Before we proceed further, we would like to
discuss the basic aspects of a superconducting quantum dot
lattice: Superconducting quantum dot lattice consists of array of
superconducting grains. The superconducting grains are of nanos-
cale size, and different states of the superconducting grain are
controlled by the ratio between charging energy and Josephson
energy, while the average charge of the dot is controlled by the
gate voltage [26–32] lattice. Superconducting circuits (qubit
lattice) have attracted considerable interest in the recent years
owing to the interesting physical properties. Superconducting
circuits are macroscopic in size but have generic quantum
properties such as quantized energy levels, superposition of states
and entanglement. Superconducting circuits are generally hun-
dreds of nanometer wide and contains trillions of electrons but
they posses quantum nature. The quantum nature of this circuit is
observable because they can be represented by a single degree of
freedom. This most attractive feature of these superconducting
circuits has opened a new area of fundamental science and the
other part is the long term potential for quantum computing [5].
There are three types of superconducting qubits, namely, charge,
flux and phase qubits. These qubits are operating based on two
fundamental properties of superconductors such as flux quantiza-
tion and Josephson tunneling [33–36].

One can consider the Cooper pair of SQD as a charged boson.
The Physics of SQD can therefore be described in terms of
interacting bosons. Bosonic physics is more interesting and hard
to understand than the fermionic physics. At the same time
quantum phase diagram of this SQD lattice is very rich with
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different quantum phases. Therefore the study of the entangle-
ment physics for the SQD lattice for both zero and finite
temperature is interesting in its own right [25–27].

It is well known from our previous studies that mesoscopic
SQUID array can also be treated as the superconducting quantum
dot lattice with modulated Josephson junction [25,26]. The
authors of Ref. [29] have found the magnetic flux induced super-
conducting Coulomb blocked in mesoscopic SQUID array and also
the magnetic flux induced superconductor–insulator quantum
phase transition. Experimentally and also theoretically it reveals
that the applied magnetic flux has an important effect in the SQD
lattice system. We will see in due course of our study that the
inhomogeneity of the gate voltage plays an important role in
entanglement to disentanglement (product state) transition.
Therefore we are motivated to study entanglement physics of
SQD lattice in the presence of applied magnetic flux and inho-
mogeneity of gate voltage. Here we consider the two qubits of
SQD lattice which is sufficient to predict entanglement to disen-
tanglement transition of our system. At the same time our
approach is completely analytical and there is no approximations
to study this two qubits problem. We will see that this minimal
model contains many important results. In the previous literature,
there are few studies for two qubits for different physical systems
[4,24,25]. The plan of the paper is as follows. We present the
model Hamiltonian and entanglement physics in Section 2 of this
paper. We present summary and conclusion in Section 3 of the
paper.

2. Model Hamiltonian for inhomogeneous superconducting
quantum dot lattice and the study of entanglement physics

2.1. Model Hamiltonian and ground state analysis

At first we write down the model Hamiltonian of SQD lattice
system with Josephson couplings having on-site charging ener-
gies and inter-site interactions in the presence of gate voltage and
external magnetic flux. We also consider the inhomogeneity in
the applied gate voltage. The Hamiltonian is written as

H¼HJ1þHEC0þHEC1: ð1Þ

We recast different parts of the Hamiltonian in quantum phase
model as

HJ1 ¼�EJ1 cos p F
F0
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where fi and fiþ1 are quantal phase of the SQD at the point i and
iþ1 respectively, as
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where EC0 is the on-site charging energy. Now

HEC1 ¼ EZ1

X
i

niniþ1,

where EZ1 is the NN charging energies between the dots respec-
tively. In the phase representation, ð�i@=@fiÞ is the operator
representing the number of Cooper pairs at the ith dot, and thus
it takes only the integer values (ni). Here, Hamiltonian HEC0

accounts for the influence of gate voltage ðeN� VgÞ, where eN is
the average dot charge induced by the gate voltage. When the
ratio EJ1=EC0-0, the SQD array is in the insulating state having a
gap of the width � EC0, since it costs an energy � EC0 to change
the number of pairs at any dot. The exceptions are the discrete
points at N¼ ð2nþ1Þ, where a dot with charge 2ne and 2ðnþ1Þe
has the same energy because the gate charge compensates the

charges of extra Cooper pair in the dot. On this degeneracy point,
a small amount of Josephson coupling leads the system to the
superconducting state.

Here we recast our basic Hamiltonians in the spin language,
where each site of the dot is either empty or singly occupied.
During this process we follow Refs. [26,30]. Now

HJ1 ¼�2EJ1 cos p F
F0
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and
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2

X
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HEC0 ¼�2EC0

X
i
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Z
i :

Here hi ¼ ðNi�2n�1Þ=2 allows the tuning of the system around
the degeneracy point by means of gate voltage. We can tune the
gate voltage in such a way that we can generate inhomogeneity in
on-site charging energy. Without loss of generality we can also
write the model Hamiltonian as

HEC0 ¼
X

i

ðEC0þdVgÞS
z
i þ
X

i

ðEC0�dVgÞS
z
iþ1: ð2Þ

where dVg is the variation of gate voltage around the lattice sites.
HEC1 ¼ EZ1

P
iS

z
i Sz

iþ1.
The total Hamiltonian of the system is

H¼ 2EJ1 cos p F
F0
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Now we consider the Hamiltonian for N¼2 case. We would like to
write the Hamiltonian in the standard basis, 91,1S, 91,0S, 90,1S,
90,0S

H¼

EZ1þEC0 0 0 0

0 �EZ1þdVg B 0

0 B �EZ1�dVg 0

0 0 0 EZ1�EC0

0
BBBB@

1
CCCCA

B¼ 2EJ19cosðpF=F0Þ9. The eigenstates of these two Hamiltonian

sites are 9c1S¼ 90,0S, 9c1S¼ 91,1S, 9c3S¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1�c2

1Þ

q
ðc19
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þc2
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q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, c2 ¼ ðdVgþAÞ=B. E1 ¼
1
2

ð2EZ1�2EC0Þ, E2 ¼
1
2 ð2EZ1þ2EC0Þ, E3 ¼�EZ1�A E4 ¼�EZ1þA. If we

consider the homogeneous system, i.e., there is no variation of

gate voltage over the lattice sites. The two states 9c3S and 9c4S

are the maximally entangled Bell states, i.e., ð1=
ffiffiffi
2
p
Þð90,1S�91,0SÞ,

ð1=
ffiffiffi
2
p
Þð90,1Sþ91,0SÞ. As we see from our analytical expression

that ground state depends on the value of EC0, EZ1 and A. Ground
state is in the disentangle state (product state) when the ground
state energy is either E1 or E2, otherwise the system is in the
entangle state. Thus for this superconducting quantum dot lattice
system there is a transition between the disentangle state to
entangle state due to the variation of the system parameters. We
will see in due course of our study that the magnetic flux plays an
important role in the transition between the disentangled state to
the entangle state.

2.2. Entanglement study for zero and finite temperature

Now we calculate the thermal entanglement of two arbitrary
qubits (N¼2) of the superconducting quantum dot lattice. The
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