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a b s t r a c t

Landau–Ginzburg equation is utilized to investigate the dielectric spectrum of an antiferroelectric

liquid crystal (AFLC). Two collective modes, one associated with the in-phase motion at the low

frequency side and the other related with the anti-phase motion at the high frequency side, are

discussed in detail utilizing the concept of bulk free energy of the material in terms of the pair

interactions of two adjacent Smectic layers. The phenomenon of helix distortion related to the in-phase

motion is observed theoretically based on the interlayer interactions of the AFLC system. The anti-phase

mode related to the degree of the antiferroelectric ordering is also an important phenomenon

depending on the layer-to-layer interactions. Lastly we have theoretically obtained the critical field

for helix unwinding with the model proposed by de Gennes.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Antiferroelectric liquid crystals (AFLC) [1–5] are a class of
Smectic tilted phase that can exhibit a strong variation in the
azimuthal component of the tilt angle from layer to layer forming
a non-synclinic structure. The projection of the average layer
molecular director on the layer is termed as the C director for an
AFLC system. The anticlinic nature of the adjacent Smectic layers
in an AFLC phase makes the C directors anti-parallel for succes-
sive layers as the molecules of each layer induce some slow
precession motion of the tilt plane orientations by forming a
macroscopic helical structure with a typical pitch of the order of
some hundreds of nanometers in dimension. Moreover the chiral
nature of the elongated molecules produces spontaneous polar-
ization in each of the Smectic layers with polarization vectors
being perpendicular to the C directors. Application of electric field
with sufficiently large amplitude rotates the interlayer molecular
arrangements with a fixed tilt angle and brings the successive
layer-to-layer polarization vectors in a preferred orientation with
each other and also with the applied field. This is known as the
field induced ferroelectric state. Such ‘‘pretransitional effect’’ of

induced ferroelectricity arises due to the field-induced distortion
of the antiferroelectric helix and also due to the field-induced
reorientations of the tilt planes. Dielectric spectroscopy of anti-
ferroelectric liquid crystals is capable to analyze those pretransi-
tional helix distortions of the tilted structures, utilizing the
frequency dependent variation in dielectric permittivities (both
real and imaginary components) in AFLC phase. The behavior of
the real part of the dielectric permitivity at a particular frequency
depends on the contribution from the different modes existed or
on the change of polarization of adjacent Smectic layers with the
applied electric field at that particular frequency. The imaginary
part that represents the loss of the system shows peaks related to
the corresponding mode relaxation. Therefore the investigation of
the dielectric spectra for antiferroelectric liquid crystals reflects a
strong light on the fundamental physical functionalities of those
phases. Over the years researchers have endeavored [6–17] to
clarify several modes with different mechanisms. However most
of those reports suggest two definite relaxation modes observed
in the frequency range of 100 Hz–10 MHz for an AFLC system.
Early works [6–7] predicted such relaxation phenomena asso-
ciated with the change in the inclination angle of the layer
director with the layer normal and thus attributed the observed
modes as similar to the soft modes related to the rotation of the
molecules around the short molecular axis. More recent works
[8–13] ascertained those modes associated to the collective
behavior of C directors. They considered the in-phase mode at
the low frequency region due to the rotation of the successive
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adjacent Smectic layers and the anti-phase one at the high
frequency region due to the rotation in the anti-parallel direc-
tions. Some results [10,11,13] also suggested that the in-phase
motion arose due to the ‘‘residual polarization’’ present in the
adjacent Smectic layers of an antiferroelectric phase as a result of
the helicity of the structure. When the residual polarization
couples with the applied electric field it distorts the helix. Others
[13–18] attributed such helix distortions associated with the
interaction between the applied electric field and the dielectric
anisotropy. The anti-phase motion is appeared due to the net
change in the polarization of the Smectic layers in the direction of
the applied field brought by a change to the antiferroelectric
ordering. Since the direction of the polarization in case of an AFLC
system depends on the way in which the layers are counted [19],
the origination of the in-phase motion gets changed as the
coupling between the applied field and the residual polarization
is held responsible for it. On the other hand the coupling between
the applied field and the dielectric anisotropy is absolutely
responsible for the helix distortion as the dielectric anisotropy
for most of the ferroelectric and antiferroelectric phases was
found to be negative [20]. We therefore propose the origination of
the low frequency mode of an antiferroelectric phase, i.e. the
in-phase motion of the C directors in the adjacent Smectic layers
are associated not only with the coupling between applied field
and induced polarization (rather than residual polarization) but
also with the coupling between applied field and the interlayer
interaction strength for an AFLC system. This is achieved theore-
tically utilizing the dependence of the dielectric strength on the
externally applied bias for the in-phase motion of the AFLC
system in consideration of both the couplings behind the
mechanism of the helix distortion.

2. Theoretical approach and discussion

2.1. In-phase mode

The bulk free energy for a pair of Smectic layers of an
antiferroelectric liquid crystal (AFLC) can be written as

F¼�EP cosfa cosfbþg cos2fb þ 2EV0 cos 2fa

� �
þ

1

2
K

@fa

@x
�

2p
p

� �2

ð1Þ

where fa ¼ ðfeþfoÞ=2 and fb ¼ ðfe�foÞ=2. fe and fo describe
the azimuthal angles associated with C directors in even and odd
layers of the AFLC system, respectively. Therefore we have
considered here the variation of the in-phase and anti-phase
fluctuations connected with fa and fb. The first term in Eq. (1) is
the coupling between applied field E and spontaneous polariza-
tion P, the second term is the dipolar term determining the
appearance of antiferroelectric ordering when the dipolar order-
ing co-efficient g is positive, the third term is the coupling
between the electric field E and the interlayer interaction for a
pair of Smectic layers (V0 being the interaction strength) and the
last one is the elastic energy term with elastic constant K

associated with the helical structure of the phase.
Since the in-phase fluctuation does not contain any appreci-

able variation with respect to the antiferroelectric ordering,
minimization of Eq. (1) with respect to fb is a necessary condition
to obtain the stability of the in-phase mode and therefore we
obtain the following relation:

sinfb ðEP cosfa�2g cosfbÞ ¼ 0 ð2Þ

Since sinfb a 0 and hence fb is governed by the following
expression:

cosfb ¼
EP

2g
cosfa ð3Þ

In view of the above equation we have the following expres-
sion for F, i.e.:
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The viscosity (Za) connected with the in-phase motion can be
expressed using the Landau–Ginzburg (L–G) equation for fa as
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Since the total applied electric field is the summation of bias
field (Eb) and oscillatory field (E0 expðiotÞ), i.e. E¼ EbþE0expðiotÞ,
we can consider a trail solution [21] for Eq. (5) as

fa ¼ 2pTþðaþb expðiotÞþc expð2iotÞÞ sinð4pTÞ ð6Þ

where the first term of the trail solution is the ground state
solution for an unperturbed helical structure and the second term
is a perturbation of the ground state with the Fourier component
sin (4pT).

Substituting the above trial solution (Eq. (6)) into L–G (Eq. (5))
we obtain the solution for fa as

fa ¼ 2pT�dðoÞ sinð4pTÞ ð7Þ

where T ¼ ðx=pÞ is a non-dimensional parameter with p being the
pitch of the helix introduced in the L–G equation.

The dðoÞ term in the above solution, which describes the
motion, can be written as
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with ta ¼ ðZaP2=16p2KÞ, the time constant for fa relaxation.
For those frequencies (low frequency) well below the fa

relaxation (o5 ð1=taÞ), we have

fa ¼ 2pT�
E2P2p2

64p2Kg
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For those frequencies (high frequency) well above the fa

relaxation (ob ð1=taÞ), we have
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here ðE2
bþðE

2
0=2ÞÞ is the mean squared electric field. The difference

between the amplitudes of fa for low and high frequency
relaxations is equivalent to the difference between that for low
frequency, fa as given in Eq. (9) containing total field E, and for
high frequency, fa, as given in Eq. (10).

The net polarization for a two-layer AFLC system is
PZ ¼ Pcosfa cosfb.

In view of Eq. (3), we have

PZ ¼
EP2

2g
cos2fa ð11Þ

When the applied field is sufficiently small, we can assume
d(o)51, then we can consider the following relation as given
below:
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