Contents lists available at SciVerse ScienceDirect # Physica B journal homepage: www.elsevier.com/locate/physb # Structural stability of URh₃ at high pressure B. Shukla ^{a,*}, V. Kathirvel ^c, N.V. Chandra Shekar ^a, S. Chandra ^b, P.Ch. Sahu ^a - ^a Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India - ^b Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu, India - ^c Department of Physics and Nanotechnology, SRM University, Kattankulathur 603203, Tamil Nadu, India #### ARTICLE INFO Article history: Received 18 October 2012 Received in revised form 31 December 2012 Accepted 2 January 2013 Available online 9 January 2013 Keywords: Actinide intermetallics High-pressure X-ray diffraction Structural stability Equation of state Band structure calculations #### ABSTRACT URh₃ stabilizes in the cubic AuCu₃ type structure at normal temperature and pressure. High-pressure angle-dispersive X-ray diffraction experiments were performed on URh₃ up to 25 GPa using a diamond-anvil cell. URh₃ remains in its cubic AuCu₃ type structure up to the maximum pressure studied. The Birch-Murnaghan equation of state fit to the *P-V* data yields the bulk modulus to be 133 GPa. The Villars structural stability map gives a clue of a possible high pressure phase transition to a Ni₃Sn type structure. The electronic structure calculations were carried out for both the ambient AuCu₃ type cubic phase and the expected Ni₃Sn type hexagonal high pressure phase. However, the total energy curves of these two structures do not intersect even at pressure as high as 360 GPa, removing the possibility of transition to Ni₃Sn type structure. © 2013 Elsevier B.V. All rights reserved. ### 1. Introduction Study of uranium intermetallics is very interesting for basic sciences as well as relevant for nuclear energy [1]. In a recent report, the phase transition behavior of uranium intermetallics has been reviewed [2]. Among various uranium intermetallic compounds (U-IMCs), UX (where X belongs to p or d block metal) mostly show phase transition from B1 to B2 type structure under pressure [3]. The UX₂ compounds stabilize either in the MgCu₂ type cubic or AlB₂ type hexagonal structure and show interesting structural transitions under pressure [4,5]. The UX₃ compounds on the other hand stabilize in AuCu₃ type cubic structure and showed high structural stability under pressure [6,7]. Earlier, high pressure structural studies on UGa₃ up to 30 GPa show that the ambient phase (AuCu₃ cubic type structure) remains stable [8]. Moreover, the electronic structure calculations on UGa₃ as a function of reduced volume show very little change in Density of States (DOS) at the Fermi level $E_{\rm F}$, supporting the structural stability of this compound under pressure. URh₃ stabilizes in the cubic $AuCu_3$ type structure at ambient conditions. Although, the U–U distance is much larger than the Hill limit (~ 3.5 Å), the 5f states in the URh₃ system exhibit itinerant nature due to strong hybridization between the U-f and Rh-d electron orbitals [9–11]. Transport, mechanical and thermal properties of URh $_3$ compound are well studied [12–15]. Several computational studies have been carried out investigating the electronic structure of URh $_3$ [16–22]. Recently, Petit et al. [23] have done electronic structure calculations on URh $_3$, UPt $_3$, UPd $_3$ and UAu $_3$ compounds using the self-interaction corrected local-spin-density approximation. In general, these experiments and computations help understand the stability of the structure and the change in hybridizations under compression and across the phase transition. In URh $_3$, the DOS shows that the $E_{\rm F}$ is situated below the f peak, and intersects a strongly hybridized f–d band. Although there are several reports on the electronic structure of URh $_3$ for ambient conditions, no such reports exist at high pressure conditions. In order to understand the structural stability and bonding nature of f-electrons on UX $_3$ type systems, Kathirvel et al. [24] carried out the electronic structure calculations on URh $_3$ up to 40 GPa [24]. In this case the self-interaction correction was not used since the interest was in the compression and structural stability rather than magnetism. Their calculations show that the position of the Fermi level E_F lies on a small peak in the DOS curve and it remains pinned at the same position even at 40 GPa. The charge density plots indicate increase in metallic character under pressure. The small changes of the DOS at E_F support the structural stability of the URh $_3$ at least up to 40 GPa [24]. In order to look for possible high pressure phases, they have made use of an empirical method of using 2-D structural stability maps for AB $_3$ type (where A belongs to lanthanide or actinide metals and B belongs to p or d block metal) compounds [25,26]. ^{*} Corresponding author. Tel.: +91 7200384234. E-mail addresses: physics1234@gmail.com, bshukla@igcar.gov.in (B. Shukla). The stability maps are used to explore the occurrence of different domains of structure as a function of parameters like average valence electron (VE), average electronegativity (ΔX) and average Zunger-pseudo-potential radii (ΔR) [26]. These maps correlate the crystal structure and the electronic configuration of the constituents of several thousands of known compounds. However, construction of such stability maps for the high pressure phases has not been explored yet, because of inadequacy of high pressure structural data. In general, one can expect the increase in VE and decrease in ΔR with pressure and this is consistent with the predicted increase in the metallic character of UX₃ compounds [24]. Moreover, the electronegativity values of metals are expected to increase monotonously with pressure [27]. With this information, one can determine candidate high pressure phase (structure). Recently, we have validated the 2-D structural stability maps for f-electron based AB2 type compounds for several high pressure phases obtained from the experimental results [25]. For URh_3 , the calculated ΔX , ΔR , and VE values are -0.232, 1.2 (a.u) and 7.5 respectively. In 2-D stability maps (AB₃ type compounds), the important observation is that the domain belonging to Ni₃Sn type structure overlaps with that of the domain with AuCu₃ type structure (where the URh₃ system is located). The range of values of the three parameters for the AuCu₃ type and Ni₃Sn type structure is listed in Table 1. The overlap indicates that URh₃ may transform to the Ni₃Sn type structure at very high pressures due to the changes in its ΔX , ΔR and VE. In this paper, we report the results of the HPXRD studies on URh₃ up to 25 GPa and also electronic structure and the total energy of the URh₃ compound in AuCu₃ and Ni₃Sn type structure as a function of reduced volume to compare their structural stability and understand the bonding nature of the f electron states. ## 2. Experimental and calculation details # 2.1. Sample preparation URh₃ was prepared by using a standard arc melting technique. Stoichiometric quantities of U (99.98%) and Rh (99.999%) were melted in He atmosphere and the melted ingot was flipped 2–3 times to obtain a homogenous compound. The ingots were then vacuum sealed in Ar atmosphere in silica tube and annealed for about 4 weeks at temperature of 1100 K. In order to remove any oxide layer, the annealed ingots were etched in 1:1 mixture of nitric and sulfuric acid for about 2 min. The annealed sample was powdered and XRD pattern showed single phase compound with cubic structure [28]. ## 2.2. High pressure X-ray diffraction In-situ high pressure X-ray diffraction experiment (HPXRD) was carried out using a Mao-Bell type diamond anvil cell (DAC) in the angle dispersive mode. The sample in the powder form was loaded into a 200 μ m diameter hole drilled in pre-indented stainless steel (SS) gasket along with the pressure calibrant material. An internal X-ray collimator of size 100 µm was used to avoid SS gasket peak. For pressure calibration the material is chosen in such a way that its diffraction lines of the calibrant do not overlap with that of the sample. In this experiment, equation of state (EOS) of platinum was used for pressure calibration. Pt, having higher bulk modulus than URh₃, does not see the pressure easily and its (1 1 1) peak shifts slower with pressure than the sample peak thereby preventing overlap of Pt and URh₃. A mixture of methanol, ethanol and water (MEW) in the volume ratio 16:3:1 was used as the pressure transmitting medium. The pressure medium MEW freezes at about 14 GPa. However, the X-ray diffraction patterns do not show any discernable change in the pressure range. The collection time for each spectrum was 2 h. The incident Mo X-ray beam obtained from a Rigaku ULTRAX18 (18 kW) rotating anode X-ray generator was monochromatised with a graphite monochromator which gives Mo K α_1 radiation with wavelength 0.7107 Å. An image plate based mardtb345 diffractometer was used to carry out the HPXRD experiments. The overall resolution of the diffractometer system is $\delta d/d \sim$ 0.001. The sample to detector distance was calibrated using LaB₆ as standard. ### 2.3. Calculations The electronic structure calculations of URh₃ were carried out using WIEN2k code [29] implemented with Full Potential–Linear Augmented Plane Wave (FP–LAPW) method. The exchange-correlation interaction was treated within GGA approximation of Perdew et al. [30]. Previous work suggests that the FP–LAPW methodology provides more reliable insights into the electronic structure of these compounds, as compared to Tight-Binding based approaches [31]. Fig. 1a and b shows the structures of URh₃ in AuCu₃ and Ni₃Sn type structures. In order to find out the equilibrium volume for URh₃ system in Ni₃Sn type structure (hexagonal structure), approximate volume was calculated from the equilibrium volume of AuCu₃ type structure. Hereafter, the cubic AuCu₃ (SG Pm-3m) and Ni₃Sn (SG P6₃/mmc) type structures will be mentioned as C and H type structures respectively. Standard crystallographic data and atomic positions are available for C type structure. C type structure has only one formula unit per unit cell (i.e. 4 atoms per unit cell). But, the H type structure has two formula units per unit cell (i.e. 8 atoms per unit cell). Hence, the unit cell volume of the H type structure is two times that of the C type structure. The following procedure was adopted to estimate the approximate lattice parameters and cell volume for H type structure. Equilibrium unit cell volume of the C type structure [24] is 64.843 Å³. Unit cell volume of the H type structure $(V_H)=2^*$ equilibrium volume of the C type structure: $$V_{\rm H} = 2*64.843 = 129.687 \text{ Å}^3; \ a = 5.714 \text{ Å};$$ $c = 4.587 \text{ Å}; \ c/a \text{ ratio} = 0.802$ Further, these approximated lattice parameters were fed into the WIEN2K code to optimize the lattice parameters. The calculation was performed in two steps. The first step was to optimize a and c values by varying volume and keeping the c/a ratio as constant. The lattice parameters a and c were derived from the **Table 1** Ranges of values of VE, ΔR , ΔX of AuCu₃ (cubic) and Ni₃Sn (hexagonal) type structures from the 2-D stability maps. | Structure type | Average valence electron (VE) | Average Zunger pseudo-potential radii ΔR (a.u) | Average electronegativity ΔX | |---|-------------------------------|--|--------------------------------------| | AuCu ₃ (cubic) (where URh ₃ is located)
Ni ₃ Sn (hexagonal) | $(7.25-7.75)$ ≥ 9.75 | (0-1.25)
(+1.0)-(-0.9) | [(-0.5)-(-0.1)] (-0.2)-(+0.15) | # Download English Version: # https://daneshyari.com/en/article/8163747 Download Persian Version: https://daneshyari.com/article/8163747 Daneshyari.com