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a r t i c l e i n f o

Article history:

Received 31 October 2012

Received in revised form

7 December 2012

Accepted 21 December 2012
Available online 4 January 2013

Keywords:

Quantum dots

Energy spectrum

Modeling

a b s t r a c t

The effective mass Schrödinger equation of a QD of parallelepipedic shape with a square potential well

is solved by diagonalizing the exact Hamiltonian matrix developed in a basis of separation-of-variables

wavefunctions. The expected below bandgap bound states are found not to differ very much from the

former approximate calculations. In addition, the presence of bound states within the conduction band

is confirmed. Furthermore, filamentary states bounded in two dimensions and extended in one

dimension and layered states with only one dimension bounded, all within the conduction

band—which are similar to those originated in quantum wires and quantum wells—coexist with the

ordinary continuum spectrum of plane waves. All these subtleties are absent in spherically shaped

quantum dots, often used for modeling.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots (QDs) are mesoscopic structures for which ab
initio modeling, often used for bulk crystals, is difficult to apply
[1] because they require extensive utilization of computational
resources. The k �p method may [2–4] provide a procedure for
dealing approximately with these problems. However, this
method can also be very costly in the use of computational
resources [5] when considering mesoscopic structures. Although
the cooperation of specialists in quantum calculations and device
technology is very desirable, and is sometimes achieved [6,7], the
development of simple models, easier to use by experimentalists
assists technological progress effectively.

In this regard, the use of the effective mass approximation
(actually a 1-band variant of the k �p method) may be interesting
for devices where the optical interaction between the QD bound
states and the conduction band (CB) is essential. This is, among
others, the case for intermediate band solar cells (IBSC) [8–11]
and QD infrared photodetectors [12,13].

The simplicity of the model is still increased, and widely used,
if square well potentials are considered. These potentials are
usually the band offset (corrected by strain) between the different
semiconductors forming the nanostructure, which for this pur-
pose are considered of sharp edges. In this paper we want to show

how despite this simplicity the solutions can present high com-
plexity whose full discussion is facilitated by the simplicity of the
basic model. In particular we want to show the appearance in QDs
of virtual bound states (confined states within the CB) already
discussed by several authors [5,14–16], filamentary and layered
states.

In this context, QDs have often been modeled as spherical
potential wells [17,18], in particular when the actual QDs have
this shape. Spherical symmetry has also been used to determine
the optimal size of the QDs in IBSC [19] in which the electron
confinement was produced by the band offset. Since the spherical
geometry permits analytical solutions which are textbook exer-
cises in quantum mechanics [20], it has also been used even if the
symmetry was known not to be spherical [21,22]. However, in
many other cases, and in particular when the QDs are grown by
molecular beam epitaxy (MBE) in the Stranski-Krastanov mode,
e.g., in the commonly used InAs QDs grown in GaAs, the QDs take
the shape of short quadrangular truncated pyramids that may be
approximated as a parallelepipedic box [23–27] (of dimensions
2a�2a�2c in this paper).

The use of the box shape in the QD allows approximate solution of
the time independent Schrödinger equation (TISE) by separation-of-
variables: the eigenfunctions—F(x,y,z)¼x(x)c(y)z(z)—are the pro-
duct of three one-dimensional functions, each one being eigenfunc-
tions of a one-dimensional Hamiltonian, in which the QD is
characterized by a square potential well.

This model is useful not only to describe the CB electrons but
also to determine, by application of the appropriate effective
masses and band offsets, the energies of VB electrons in all the
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three bands (heavy holes, light holes and split-off band) [27] that
characterize these electrons. For the CB, the method provides a
reasonable approximation of the eigenfunctions and thus it can be
directly applied (much more easily than in spherical symmetry)
to the determination of the intraband photon absorption matrix
elements [25,26,28]. In the case of the VB, a four-band k �p
solution, still based in the box shaped symmetry, is necessary
[27,29] for determination of the eigenfunctions and the interband
absorption coefficient.

However, the separation-of-variables solutions are only an
approximation [25]. In this paper we shall use these solutions
as a basis for the development of the described Hamiltonian so
obtaining the exact eigenvalues and eigenfunctions; exact, of
course, in the limits of our geometrical description of the QD, its
square potential and in the frame of the one-electron treatment
and the effective mass approximation.

Section 2 presents the exact Hamiltonian we want to solve and
describes how it is modified to accept separation-of-variables
solutions. A perturbation Hamiltonian is then defined that trans-
forms the latter into the former. Section 3 analyzes the nature of
the eigenvectors and eigenvalues, describing the modalities of the
discrete spectrum and the different continua spectra found and
finally calculates the eigenfunctions and eigenvectors for each
modality. Section 4 studies the density of states associated to
each discrete or continuum spectrum modality. Section 5 com-
pares the spherical symmetry solutions to the box shaped
symmetry used in this paper. Finally Section 6 draws some
conclusions.

2. The exact and separation-of-variables potentials

2.1. The Schrödinger equation

The time-independent Schrödinger equation (TISE) is

_2

2mn

r
2C
C
þE¼ V rð Þ ð1Þ

where the right side term is the band edge position (with changed
sign if it refers to holes). The asterisk indicates that an effective
mass is used. The energy origin is arbitrary and for the calcula-
tions the zero is set at the bottom of the potential well inside the
QD (which is at the dot material conduction band edge) and U

outside it. In symbolic language (8¼for all, 4¼and, 3¼or),

VðrÞ ¼
0 8 9x9oa49y9oa49z9oc

U 8 9x9Za39y9Za39z9Zc

(
ð2Þ

However, for presentation purposes, the zero shall be set at the
barrier material conduction band edge, which means that U must
be subtracted from all the energy results. The reason for taking
the origin of potential at the QD CB bottom is explained in the two
following sections.

2.2. One dimensional solutions

The functions x(x), c(y), z(z) are defined by

_2

2mn

d2x=dx2

x
þEx ¼

0 89x9oa

U 89x9Za

(
ð3Þ

and similarly for c(y), z(z) (in the latter case using c instead of a as
the well boundary).

The position of the origin of potential at the QD CB bottom is
common in textbooks for one dimensional square potential wells.
It also fits with our choice in the last section.

Finding the solutions for x(x) (or for c(y), z(z)) constitutes a
simple exercise of differential equations. In this context, a

discussion is provided e.g. in [25]. For EoU (the subindex x is
dropped in this subsection) bounded solutions, different from the
trivial x(x)�0, are even cosðkxð ÞÞ or odd sinðkxð ÞÞharmonic func-
tions inside the well flanked by fading exponential functions
outside it exp �kxð Þ 8 xZaÞð . Solutions may only exist for certain
values of the wavenumber kn for which the non-fading exponen-
tial solution is canceled. The energy En, fading coefficient kn and
k-values are related by

En ¼ _2k2
n=2mn ¼U�_2k2

n=2mn ð4Þ

The index n denotes the different permitted energies in
increasing order. It is a quantum number (QN). Odd QNs corre-
spond to even functions and vice versa.

Table 1 presents the values of k for the different QNs and the
one-dimensional energy. The CB offset and QD dimensions are
those in [28] and are derived from the data of a prototype IBSC in
[30] (sample SB).

Although the effective mass is different for the dot (InAs) and
barrier (GaAs) material, we use the dot material value across this
paper. A straightforward modification of Eq. (1) where mn is
position-variable would lead to a non-hermitical Hamiltonian
[31]. There are several possible modifications but their discussion
are beyond the scope of this paper. This effective mass choice is
accurate for low QNs and less so for the extended states to be
studied below, but still very meaningful qualitatively.

For EZU, the solution is harmonic with wavenumber k inside
the potential well and also harmonic, even or odd, outside it but
with a different value of the wavenumber ke and a phase term.
That is, they are of the form cos(kex�y) or sin(kex�y). Details can
be found, e.g. in [28]. In this case,

En ¼Uþ_2k2
e=2mn ¼ _2k2=2mn ð5Þ

and

ke=k
� �

cotðkaÞ ¼ cot kea�yð Þ

ke=k
� �

tanðkaÞ ¼ tan kea�yð Þ ð6Þ

respectively for the even and odd functions.
For EZU, ke can take any value and therefore it leads to a

continuum spectrum of energies. Since the mathematics of con-
tinuum spectra is rather complicated, it is common to assume
that the wavefunctions are restricted to a large but finite region (a
segment of length 2L, with large L, for one-dimensional cases, or a
big parallelepiped for three-dimensional ones) and assume peri-
odic conditions there. This leads [28] to

keL�y¼ ~np=2 ð7Þ

where ~n is an integer, odd for the even solutions and even for the
odd solutions.

Neglecting the variation of y the permitted values of kex are
separated Dkeffip/2L that is small as long as L is big (with respect
to a or c). However, only a numerable set of ke-values are now
permitted and the new QN, ~n, has now appeared.

Table 1
Values of k (multiplied by the potential well half-width) and one-dimensional

energy for the CB offset and QD dimensions in [28]. Energies are with respect to

the barrier material CB bottom.

n x-,y-eigenfunctions z-eigenfunctions

1 2 3 4 1 2

k�a, kzc 1.299 2.579 3.806 4.810 0.968 1.695

E0 (eV) �0.439 �0.338 �0.180 �0.0045 �0.338 �0.059

U¼0.473 eV; mn
¼0.0294me; a¼8 nm; c¼3 nm.
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