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Abstract Scaled down models are widely used for experimental investigations of large structures

due to the limitation in the capacities of testing facilities along with the expenses of the experimen-

tation. The modeling accuracy depends upon the model material properties, fabrication accuracy

and loading techniques. In the present work the Buckingham p theorem is used to develop the rela-

tions (i.e. geometry, loading and properties) between the model and a large structural element as

that is present in the huge existing petroleum oil drilling rigs. The model is to be designed, loaded

and treated according to a set of similitude requirements that relate the model to the large structural

element. Three independent scale factors which represent three fundamental dimensions, namely

mass, length and time need to be selected for designing the scaled down model. Numerical predic-

tion of the stress distribution within the model and its elastic deformation under steady loading is to

be made. The results are compared with those obtained from the full scale structure numerical com-

putations. The effect of scaled down model size and material on the accuracy of the modeling tech-

nique is thoroughly examined.
ª 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Any new design is subjected to many investigations through
theoretical analyses and experimental verification. As a system

becomes more complex, assumptions are usually made in order
to formulate a mathematical model for the system. In the
absence of a complete design base, a new system requires
extensive experimental evaluation until it gains the necessary

reliability and desired performance. For large and ‘‘oversize’’
systems, such as offshore/onshore rigs, tall buildings, dams,
bridges, spacecraft, airplanes, and space stations, creating the

actual working conditions for testing the prototype most of
the time is impossible, as in providing a zero gravitational
acceleration condition on the ground for testing large space

stations or antennas [8,16,4].
Even when a prototype test is possible, it is expensive, time

consuming, and difficult to control. Thus, it is extremely useful

if a prototype can be replaced by a similar scale model which is
much easier to work with. The only possible way to obtain
experimental data of overall performance of such a system
and the interaction of its elements is to design a small similar

system (scale model) which replicates the behavior of the actual
system (prototype). The accuracy of the behavior of the
prototype, which is predicted from interpreting the test results

of the model, is dependent on the relationship between the
corresponding variables and parameters of model and its pro-
totype [3].

Similarity of systems requires that the relevant system
parameters are identical and these systems are governed by
unique set of characteristic equations. Thus, if a relation or

equation of variables is written for a system, it is valid for
all systems which are similar to it [16,7]. Each variable in a
model is proportional to the corresponding variable of the pro-
totype. In establishing similarity conditions between the model

and prototype two procedures can be used. The similarity con-
ditions can be established either directly from the field equa-
tions of the system or, if it is a new phenomenon and the

mathematical model of the system is not available, through
dimensional analysis. In the second case, all of the variables
and parameters which affect the behavior of the system must

be known. By using dimensional analysis, an incomplete form
of the characteristic equation of the system can be formulated
[4]. This equation is in terms of non-dimensional products of
variables and parameters of the system. Then, similarity condi-

tions can be established on the basis of this equation.

2. Theories of scale model similitude

Similitude theory is concerned with establishing necessary and
sufficient conditions of similarity between two phenomena.

Establishing similarity between systems helps to predict the
behavior of a system from the results of investigating other sys-
tems which have already been investigated or can be investi-
gated more easily than the original system. The behavior of

a physical system depends on many parameters, i.e. geometry,
material behavior, dynamic response, and energy characteristic
of the system. The nature of any system can be modeled math-

ematically in terms of its variables and parameters [15].
A prototype and its scale model are two different systems

with different parameters. The necessary and sufficient condi-

tions of similitude between prototype and its scale model
require that the mathematical model of the scale model can
be transformed to that of the prototype by a bi-unique map-
ping or vice versa [14]. Qian et al. [10] studied the scaling laws

for impact damage in fiber composites by experiments. Their
experiments on scale plates, made of carbon and subjected to
impact loads, were carried out and the scaling laws for scaling

(up) the strain responses of the specimens to those of the full-
size ones were derived. The results show that the derived scal-
ing laws could reasonably predict the responses of the undam-

aged carbon plates undergoing impact loads. Simitses et al. [13]
studied the design of scale-down models for predicting the lam-
inated shell buckling and free vibration. In their article, the

similitude theory is employed to establish the similarity
between the chosen structural systems, and then the scaling
laws are derived and used to predict the physical characteristics
of the full-size structures. Vassalos [17] investigated the physi-

cal modeling and similitude of marine structures and provided
some valuable information concerning the appropriate use of
models in the design of marine structures. Safoniuk et al.

[11] presented a method to scale up the three-phase fluidized
beds, in which the scaling laws are obtained by achieving geo-
metric and dynamic similitude with the aid of the Buckingham

p theorem. Chouchaoui et al. [2] used the similitude theory to
develop the scaling laws for predicting the elastic behavior of a
laminated cylindrical tube under tension, torsion, bending,

internal and external pressure from the corresponding ones
of the scale model.

2.1. Scaling laws and parameters optimization methods

Several techniques were introduced where most of the litera-
ture uses a gradient-based optimization method and the solu-
tion often oscillates or diverges, depending upon the initial

search point, since the model and the measurement errors
can make the objective function complex [1,5]. One of the
approaches used to overcome this problem is to use a robust

optimization method and genetic algorithms (GAs) which were
successfully used to find the parameter set in a stable manner.
Nevertheless, this stability of convergence is achieved only at
the expense of efficiency. Taking the advantage of the
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