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a b s t r a c t 

The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 

200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the supercon- 

ducting critical temperature on pressure became a subject of great interest and a high number of papers 

on of different aspects of this subject have been published in the scientific literature since. In this pa- 

per, we calculate the superconducting critical temperature as a function of pressure, T c ( P ), by a simple 

method. Our method is based on the functional derivative of the critical temperature with the Eliashberg 

function, δT c ( P )/ δα2 F ( ω). We obtain the needed coulomb electron-electron repulsion parameter, μ∗( P ) 

at each pressure in a consistent way by fitting it to the corresponding T c using the linearized Migdal–

Eliashberg equation. This method requires as input the knowledge of T c at the starting pressure only. It 

applies to superconductors for which the Migdal–Eliashberg equations hold. We study Al and β−Sn two 

weak-coupling low- T c superconductors and Nb, the strong coupling element with the highest critical tem- 

perature. For Al, our results for T c ( P ) show an excellent agreement with the calculations of Profeta et al. 

which are known to agree well with experiment. For β−Sn and Nb, we found a good agreement with the 

experimental measurements reported in several works. This method has also been applied successfully 

to PdH elsewhere. Our method is simple, computationally light and gives very accurate results. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

One of the goals of the research in superconductivity nowadays 

is to find a system with a room critical temperature. Due to the 

success with the sulfur hydride under pressure [1] the detailed un- 

derstanding of the different properties of a material that contribute 

to enhance its critical temperature, became of central interest. For 

this reason, one of the present lines of research is the dependence 

of the critical temperature on pressure, T c ( P ). In electron-phonon 

superconductors, pressure affects the vibration spectrum by shift- 

ing it to higher frequencies which can enhance or lower the critical 

temperature depending on details of the system under study. Also 

the electron-phonon interaction is affected by pressure. This is put 

in evidence by several experimental works [2–10] . 

In order to contribute to the understanding of the details that 

determine whether or not pressure will enhance T c , we have de- 

veloped a simple but still quite accurate method to calculate the 

superconducting critical temperature as a function of pressure , 

T c ( P ), . We use the density functional theory (DFT) and the density 

functional perturbation theory [11–13] (DFPT) to get the electron 

and phonon band structures and the Eliashberg function, α2 F ( ω), 
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from first principles. We use the Quantum Espresso suite codes 

[14,15] for most of the calculations made in this work. This method 

applies to superconductors for which the Migdal–Eliashberg equa- 

tions (MEE) [16,17] are valid to describe their superconducting 

properties as it is the case of the electron-phonon superconduc- 

tors. The parameters that enter the linearized MEE (LMEE) are 

the critical temperature T c , which can be obtained from resistiv- 

ity experiments, for example, the frequency at which the sum 

over the Matsubara frequencies on the frequency imaginary axis is 

stopped, the so-called, cut-off frequency, ω c , which can actually be 

fixed numerically, and the electron-electron repulsion parameter, 

μ∗. The electron-phonon interaction parameter, λ, is known once 

the Eliashberg function, α2 F ( ω), is known and it can also be ob- 

tained from specific heat experiments, for example. The electron- 

electron repulsion parameter, μ∗, requires some attention. Actually, 

it has not been yet neither calculated nor measured with enough 

precision to be useful as the parameter needed to solve the LMEE 

to obtain an accurate value for T c . If T c is known, then by solv- 

ing the LMEE we can fix μ∗. When T c is not known, several ways 

have been proposed to estimate μ∗ so that it can be calculated 

from the LMEE. P.Morel and Anderson [18] suggest the following 

analytic formula 

μ∗ = 

μ

1 + μln ( E el 

ω ph 
) 

(1) 
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where the dimensionless parameter μ = < V > N(E F ) is the prod- 

uct of the averaged screened coulomb interaction, V, and the 

density of states at the Fermi energy, N ( E F ). E el and ω ph are 

the electron and phonon energy scales, respectively. Further, Ben- 

nemann and Garland [19] , Smith [4] and Neve et al. [20] give 

semi-empirical formulas to estimate the behavior of the coulomb 

pseudo-potential as a function of pressure. Liu et al. [21] and Fre- 

ericks et al. [22] calculated μ∗ scaled to the maximum phonon 

frequency, meaning to replace ω ph in Eq. (1) by ω max , the max- 

imum phonon frequency. Daams and Carbotte [23] fit μ∗ solving 

the LMEE using the experimental value of T c . In a more recent 

work Bauer et al. [24] calculated corrections to μ∗ based on the 

Hubbard–Holstein model. There is no consensus concerning the 

proper way to calculate μ∗ under pressure or even at ambient 

pressure. For example, for Nb at ambient pressure, a set of differ- 

ent values for μ∗ are reported, 0.117 [25] , 0.13 [20] , 0.14 [26] , 0.183 

[27] , 0.21 [28] and 0.249 [29] which differ considerably from each 

other. 

The rest of the paper is organized as follows. In Section 2 , we 

present the theoretical foundations that supports our method. The 

method is described in Section 3 . In the next Section 4 , we de- 

scribe some technical details of the calculation. In Section 5 , we 

present our results and compare them with other work and to ex- 

periment. For Al, with the known successful calculations of Profeta 

et al. [9] and with experiment [2,3,8] ; for Sn, with the experimen- 

tal measurements of Smith and Chu [30] , Berman et al. [5] and Jen- 

nings and Swenson [6] . We get a good agreement with them. For 

Nb, we compare our results to the experimental ones of Struzhkin 

et al. [7] . Finally, we summarize our work in a final Section 6 . 

2. Theoretical foundations 

2.1. The functional derivative 

The functional derivative, δT c 
δα2 F (ω) 

, can be thought as a measure 

of the strength of the influence of a particular frequency on T c . In 

this sense, a calculation of the functional derivative tells us how 

favorable a certain frequency range is for an increase in the transi- 

tion temperature. The maximum of the functional derivative, ω opt , 

is therefore the most important region in determining the critical 

temperature. Actually very useful relation between this optimum 

frequency and Tc does exist, namely h̄ ω opt = CK B T c where C is a 

constant between 7–8 and K B is the Boltzman constant. 

From the solution of the LMEE and using the algorithm of Leav- 

ens [31] the functional derivative can be obtained. Changes in T c , 

calculated using this method have been considered previously by 

several authors to study the influence on T c due to changes in con- 

centration [32] and changes in composition [33] . Also for a two- 

band superconductor as MgB 2 [34] or, as in our case, to study the 

influence of pressure [23,35] . 

2.2. Linearized Migdal–Eliashberg equations 

Central to our calculations is the functional derivative of T c with 

de Eliashberg function, α2 F ( ω), δTc ( P i )/ δα
2 F ( ω), which we obtain 

from the solution of the Linearized Migdal–Eliashberg equations 

(LMEE) [16,17] . As stated before, we solve LMEE to fit μ∗ to the 

corresponding value of T c . On the imaginary axis, the LMEE is: 

ρ�̄n = πT 
∑ 

m 

[
(λmn − μ∗) − δnm 

| ̃  ω n | 
πT 

]
�̄m 

, (2) 

˜ ω n = ω n + πT 
∑ 

m 

λmn sgn (ω n ) , (3) 

ω n = (2 n − 1) πT , (4) 

�̄n = 

˜ �n 

ρ + | ̃  ω n | , (5) 

λmn = 2 

∫ ∞ 

0 

dω ω α2 F (ω ) 

ω 

2 + (ω n − ω m 

) 2 
. (6) 

where T is the temperature, ˜ �n is the gap function, ω n is the 

Matsubara frequency, ρ is the pair breaking parameter and n = 

0 , ±1 , ±2 , . . . . In particular, λnn ≡λ is the electron-phonon coupling 

constant. We take ω c to be 10 times the maximum phonon fre- 

quency, ω max , as suggested by Bergmann and Rainer [56] . The 

Eliashberg function is defined as 

α2 F (ω) = 

1 

N(εF ) 

∑ 

mn 

∑ 

qν

δ(ω − ω �
 q ,ν ) 

×
∑ 

�
 k 

| g � q ν,mn 
�
 k + � q , � k 

| 2 δ(ε�
 k + � q ,m 

− εF ) δ(ε�
 k ,n − εF ) (7) 

where g 
�
 q ν,mn 

�
 k + � q , � k 

is the electron-phonon coupling matrix element, ε�
 k + � q 

and ε�
 k ,n 

are the energy of the quasi-particles in bands m and n 

with wave vectors � k + 

�
 q and 

�
 k , respectively. ω �

 q ,ν is the phonon en- 

ergy with momentum 

�
 q and branch ν . N ( εF ) is the electronic den- 

sity of states at the Fermi energy, εF . 

3. The method 

To calculate the critical temperature as a function of pressure, 

we need only as the starting data, the critical temperature at 

the starting pressure, T c P i . We make use of the Espresso codes 

[13] to optimize the lattice constants first and then to calculate the 

Eliashberg function, α2 F ( ω, P i ), from first principles at the start- 

ing pressure. To get the electron-electron repulsion parameter, μ∗
P i 
, 

we solve the Linearized Migdal Eliashberg Equation (LMEE) to fit 

it to the known T c P i . We use the Mc Master programs for that 

purpose [23,25,36,37,55] . With these data, we calculate the func- 

tional derivative of Tc with the Eliashberg function, α2 F ( ω) at P i , 

δTc ( P i )/ δα
2 F ( ω) [19] . Now, we define the next pressure, say P i +1 , 

obtain the new lattice parameters, optimize them and get the new 

Eliashberg function, α2 F (ω, P i +1 ) . This new Eliashberg function dif- 

fers from the previous one by 

�α2 F (ω) P i +1 ,P i = α2 F (ω, P i +1 ) − α2 F (ω, P i ) (8) 

The change in the critical temperature is now obtained from 

(Rainer and Bergman [38] , and Baquero and López-Olazagasti [39] ) 

�T c P i +1 ,P i = 

∫ ∞ 

0 

δT c(P i ) 

δα2 F (ω) 
�α2 F (ω) P i +1 ,P i dω (9) 

and then, the T c P i +1 
at the new pressure is calculated as 

T c P i +1 
= T c P i + �T c P i +1 ,P i . (10) 

4. Technical details 

We, first, relax the internal degrees of freedom and the lat- 

tice vectors of the corresponding structure (Al, β-Sn and Nb) us- 

ing the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton 

algorithm at each pressure to get the corresponding lattice con- 

stants. From these relaxed structure configurations, we calculated 

the electronic and phonon band structures, electron (DOS) and 

phonon (PHDOS) densities of states, and the Eliashberg function 

α2 F ( ω). We used a kinetic energy cut-off of 60 Ry for the expan- 

sion of the wave function into plane waves and 240 Ry for the 

density. To integrate over the Brillouin zone (BZ), we used for the 

electronic integration a k-grid of 32 × 32 × 32 and for the phononic 

integration a q-grid of 8 × 8 × 8 according to the Monkhorst–Pack 
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