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a b s t r a c t 

We have employed the massless Dirac’s fermions formalism together with the Kubo’s linear response the- 

ory to study the transport by electrons in the graphene monolayer. We have calculated the electric con- 

ductivity and verified the behavior of the AC and DC electric conductivities of the system that is known 

to be a relativistic electron plasma. Our results show a superconductor behavior to the electron transport 

and consequently the spin transport for all values of T > 0 and a behavior of the AC conductivity tending 

to infinity in the limit ω → 0. In T = 0 our results show an insulator behavior with a transition from a 

superconductor state at T > 0 to an insulator state at T = 0 . 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Graphene is an allotropic form of the carbon that is a lot re- 

searched actually. Its semiconductor properties with low-lying ex- 

citations obey the massless Dirac’s equation [1] . The interplay be- 

tween the antiferromagnetic state and the Kekule valence bond 

solid ordering in the zero energy levels of neutral monolayer and 

bilayer graphene have been studied in Ref. [2] . The understand- 

ing of the dynamics of many interacting particles is a formidable 

task in physics. For electronic transport in matter, strong interac- 

tions can lead to a breakdown of Fermi liquid paradigm of coher- 

ent quasi-particles scattering of impurities. In such situations, pro- 

vided that certain conditions are filled, the complex microscopic 

dynamics can be coarse-grained to a hydrodynamics description of 

the momentum, energy and charge transport on long length and 

time scales [3,4] . 

The spin transport properties by electrons in graphene has been 

studied in the literature using the Boltzmann’s equation formal- 

ism [5,6] . Is well known that a spin current can be converted in a 

charge current at room temperature [7–9] . Graphene is an interest- 

ing material for spintronics showing long spin relaxation lengths 

even at room temperature. For future spintronic devices is im- 

portant to understand the behavior of the spins and the limita- 

tions for the spin transport in structures where the dimensions are 

smaller than the spin relaxation length [10] . The electron spin life- 

time in carbon materials is expected to be very long because of 

the very large natural abundance of the isotope 12C without nu- 

clear spin and a small size of spin orbit coupling. This even led 
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to propose graphene as an optimal material to store quantum in- 

formation in the spins of confined electrons. Moreover the most 

of the experiments show that the spin lifetimes are in the range 

of nanoseconds, shorter than expected from these considerations, 

which lies at the heart of the design of devices where graphene is 

used as a passive component to carry electron currents spin polar- 

ized. The electronic properties of transition metal atoms adsorbed 

on a graphene sheet have been analyzed in the framework of the 

quantum theory of atoms and molecules [11] . 

The Kubo formalism has been many employed in the literature 

to study the spin transport by ions of the lattice in spin systems 

described by the Heisenberg model and XY model. For example, 

Sentef et al. [12] has analyzed the spin transport in the easy-axis 

Heisenberg antiferromagnetic model in two and three dimensions. 

Damle and Sachdev [13] treated the two-dimensional case using 

the non-linear sigma model in the gapped phase. Pires and Lima 

[14–17] treated the one and two-dimensional easy plane Heisen- 

berg antiferromagnetic model. Lima and Pires [18] studied the spin 

transport in the two-dimensional anisotropic XY model using the 

SU(3) Schwinger boson theory in the absence of impurities, Lima 

[19] studied the case of the Heisenberg antiferromagnetic model 

in one and two dimensions with Dzyaloshinskii–Moriya interac- 

tion. Zewei Chen et al. [20] analyzed the effect of spatial and spin 

anisotropy on spin conductivity for the S = 1 / 2 Heisenberg model 

on a square lattice and more recently, Kubo et al, [21] studied 

the spin transport in two-dimensional non-collinear antiferromag- 

nets at T = 0 using spin wave theory, Lima has studied the spin 

transport in the site diluted two-dimensional anisotropic Heisen- 

berg model in the easy plane using the self consistent harmonic 

approximation and the Schwinger boson theory [22–27] . 
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The electron transport properties of zigzag graphene nanorib- 

bons with upright standing carbon chains were investigated by us- 

ing first-principles calculations. The calculated results show a sig- 

nificant odd-even dependence [28] . From an experimental point of 

view, recently, there is an intense research about spin transport by 

electrons where has been investigated the quantum Hall effect for 

spins and the magnon spintronics [29–35] . In studies of these ef- 

fects often only the sign differences between related quantities like 

magnetic fields and generated spin and charge currents are deter- 

mined. The spin injection and transport in single layer graphene 

can be investigated using nonlocal magnetoresistance (MR) mea- 

surements [36–40] . 

The aim of this paper is to study the spin transport by elec- 

trons in graphene monolayer using the Dirac’s fermions formalism. 

The graphene consists in a fermion system with a relativistic Dirac 

spectrum where the energy vanishes linearly at isolated points in 

the first Brillouin zone. Dirac’s fermions are provided by numerous 

new experimental realizations. These include d-wave superconduc- 

tors and topological insulators [41] . 

This work is divided in the following way. In Section 2 , we dis- 

cuss the Dirac’s fermion model, in Section 3 we discuss the Kubo’s 

formalism for the electron transport and we present the analytical 

results, in Section 4 we make the diagrammatic expansion for the 

Green’s function and in the last section, Section 5 , we present our 

conclusions and final remarks. 

2. The Dirac fermion model 

The model of free-fermionic particles relativistic of the 

graphene in D = 1 + 1 dimension is described by the following 

Hamiltonian density [42] 

H = v F J 
∫ 

d 2 xψ 

† 
α(x ) iσαβ

3 
∂ x ψ β (x ) , (1) 

where ψ α( x ) with α, β = 1 , 2 denote a two component Fermi field 

in D = 1 + 1 and D = 2 + 1 space dimensions and v F is the Fermi’s 

velocity. We have considered unities where v F = 1 and h̄ = 1 . The 

interaction term has the form up to the irrelevant additive constant 

H int = −2 γ J 

∫ 
d 2 x ( ψ̄ (x ) ψ(x )) 2 (2) 

that is the interaction term of the (1+1)-dimensional Gross–Neveu- 

model. The expression ψ̄ ψ is the continuum limit of 

1 

2 a 0 
(n (2 s + 1) − n (2 s )) ≈ −

(
ψ 

† 
1 
(x ) ψ 1 (x ) − ψ 

† 
2 
(x ) ψ 2 (x ) 

)
≡ ψ̄ ψ, 

(3) 

a 0 is the lattice spacing and σ 3 is the diagonal Pauli matrix. 

ψ 1 (x ) = 

1 √ 

2 

(−R (x ) + L (x )) 

ψ 2 (x ) = 

1 √ 

2 

(R (x ) + L (x )) (4) 

where L and R are the Fermi fields moving towards the right and 

left respectively with speed v F = 1 . 

The single-particle spectrum has the relativistic form 

ω k � v F k, (5) 

where in the massless (gapless) limit, the spectrum is linear, there- 

fore time and space scale in the same way T ∼ L as required 

by relativistic invariance [42] . There are local interactions such 

as ( ψ̄ γμψ) 2 and ( ψ̄ ψ) , where ψ̄ = ψ 

† γ 0 . The action of a free 

Dirac’s field is given by 

S = 

∫ 
d 2 x ψ̄ α(x ) iγ μ

αβ
∂ μψ β (x ) (6) 

where γ are the 4 × 4 Dirac’s matrixes. 

γ 0 = −i 

(
0 1 

1 0 

)
γ = −i 

(
0 −σ

−σ 0 

)
. (7) 

1 is the unit 2 × 2 matrix, and σ are the components of Pauli’s 

matrices where the Dirac γ -matrices, γ 0 , γ 1 and γ 5 satisfy 

{ γμ, γν} = 2 g μν, γ5 = iγ0 γ1 , (8) 

where g μν is the metric tensor. In the theory of free massless 

Dirac’s fermions there is a fixed point of the renormalization group 

[42] . 

3. The Kubo formalism of transport 

We use the low energy approach Dirac’s fermion [5,42] to de- 

termine the regular part of the electron conductivity ( AC conduc- 

tivity) or continuum conductivity . An electron current appears if 

there is an electric field, which is given by the Ohm’ Law J = σ �
 E . 

In a similar way a spin current appears as a response to a mag- 

netic field J S = σ∇ 

�
 B , through the system, where it plays the role 

of a chemical potential for spins. If we connect a low dimensional 

magnet with two bulk ferromagnetic, they can act as reservoirs for 

spins [33,34] . Then, one has a flow of spin current if there is a dif- 

ference, 
�
 B , between the magnetic fields at the two ends of the 

sample. 

In the Kubo formalism [12,14,43,44] the electric conductivity or 

the spin conductivity is given by: 

σ (ω) = lim 

�
 k → 0 

〈K〉 + �( � q , ω) 

i (ω + i 0 

+ ) 
, (9) 

where 〈K〉 is the kinetic energy and �( � q , ω) is the current-current 

correlation function defined by 

�( � k , ω) = 

i 

h̄ N 

∫ ∞ 

0 

dte iωt 〈 [ J ( � k , t) , J (−�
 k , 0)] 〉 . (10) 

�( � k , ω + i 0 + ) is analytic in the upper half of the complex plane 

and extrapolation along the imaginary axis can be reliably done. 

The current operator for graphene is given by [5,42] 

J = ψ̄ γμψ. (11) 

The real part of σ ( ω), σ ′ ( ω), can be written in a standard form 

as [44] 

σ
′ 
(ω) = σ0 (ω) + σ reg (ω) , (12) 

where σ 0 ( ω) is the DC contribution given by σ0 (ω) = D S δ(ω) , 

here D S is the Drude’s weight 

D S = π [ 〈K〉 + �
′ 
( � k = 0 , ω → 

�
 0 )] . (13) 

σ reg ( ω), the regular part of  σ ( ω), is given by [44] 

σ reg (ω) = 

�
′′ 
( � k = 0 , ω) 

ω 

. (14) 

It represents the continuum contribution to the conductivity. In 

the Eqs. (13) and (14) , �′ and �′ ′ stands for the real and imaginary 

part of �. 

Using the Matsubara’s method, we obtain the Green’s function 

for the model Eq. (1) as 

G j (ω) = 

∑ 

α

∫ π

0 

d 2 k 

(2 π) 2 
v 2 F G 

0 
α(ω 1 ) ̃  G 

0 
α(ω + ω 1 ) (15) 

with 

G 

0 
α(ω) = 

1 

iω n − ω k 

, ˜ G 

0 
α(ω) = 

−1 

iω n + ω k 

. (16) 
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