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a b s t r a c t

Current–voltage characteristics of triple-barrier Josephson junctions are analytically and numerically
studied. In the presence of a constant current bias and for homogeneous Josephson coupling of all layers,
these systems behave exactly as ordinary Josephson junctions, despite their non-canonical current-phase
relation. Deviation from this behaviour is found for inhomogeneous Josephson coupling between differ-
ent layers in the device. Appearance of integer and fractional Shapiro steps are predicted in the presence
of r. f. frequency radiation. In particular, the amplitudes of these steps are calculated in the homogeneous
case as clear footprints of the non-canonical current-phase relation in these systems.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Josephson junctions (JJs) have a great variety of applications [1].
The most diffuse use of these superconducting elements can proba-
bly be recognized in the realization of quantum interference
devices [2]. Usually the latter ultra-sensitive magnetic field sensors
are fabricated utilizing conventional JJs. However, double or multi-
barrier JJs have been also proposed as elements of Superconducting
Quantum Interference Devices (SQUIDs) [3,4]. It is therefore impor-
tant to study the properties of the latter types of junctions and, in
particular, the current–voltage (I–V) characteristics of triple-bar-
rier Josephson junctions (TBJJs).

We recall that the current–voltage (I–V) characteristics of a sin-
gle-barrier Josephson Junction with negligible capacitive parame-
ter can be analytically derived by means of the Resistively
Shunted Junction (RSJ) model [1]. In this non-hysteretic limit, in
fact, the dynamical equation of a JJ can be written as follows

d/
ds
þ sin / ¼ iB; ð1Þ

where, on the right hand side (r.h.s.) of (1), iB is the bias current
value IB normalized to the maximum Josephson current IJ0; on the
left hand side (l.h.s.), / is the superconducting phase difference

between the two junction electrodes and s ¼ 2pRIJ0
U0

t is the normal-

ized time, R and U0 being the resistive parameter of the JJ and the
elementary flux quantum, respectively. The current-phase relation
(CPR) of a canonical JJ can be written as iJ = sin/, where iJ is the cur-
rent flowing in the ideal Josephson element normalized to IJ0, so

that the second addendum of the l.h.s. of (1) can be identified with
this term. It is thus well known that the nonlinear ordinary dif-
ferential equation (1) can be integrated by means of separation of
variables and that the resulting I–V characteristics can be described
by the following simple expression [1]:

i ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hvi2 þ 1

q
; ð2Þ

where i is the current, normalized to IJ0, flowing in the JJ, the plus
and minus signs referring to the positive and negative voltage
branches, respectively, and where v ¼ V

RIJ0
is the normalized tension

across the JJ, the argument in the triangular brackets being time
averaged.

As for TBJJs, we first notice that their CPR is different from the
usual sin/ dependence. In fact, these four-layer systems have a
CPR which can be deduced from the behaviour of double-barrier
Josephson junctions (DBJJs). The latter systems have been
experimentally investigated by Nevirkovets et al. [5,6]. Integer
and fractional Shapiro steps were detected by the latter authors,
so that deviations from the sin/ dependence of the CPR can be
hypothesized. A microscopic theory of DBJJs confirming the
existence of non-sinusoidal CPRs in DBJJs has been developed by
Brinkman et al. [7]. By applying a semi-classical model [8] deriv-
able from the well known Feynman and Ohta’s models for a JJ
[9,10], it can be confirmed that, in the case the maximum
Josephson currents, I1 and I2, in the two JJs of the trilayer system
are different, the CPR of the DBJJ can be written as follows

I ¼ I0 cþ ð1� e2Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� e2Þ sin2 /

2

q
2
64

3
75 sin /; ð3Þ
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where I0 is the average value of I1 and I2, and where e ¼ I2�I1
2IA

, c being

proportional to the coupling energies between the two outermost
electrodes in the DBJJ. In the limit of very small values of e, i. e.
for I2 � I1, the above expression reduces to the following [11]

I ¼ I0 c sin /þ sgn cos /
2

� �
sin

/
2

� �
: ð4Þ

Therefore, the following expression for the CPR of a TBJJ can be
argued:

I ¼ I0
1� e2

2
sin /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ ð1� e2Þ cos2 /
2

q ; ð5Þ

in which only the second addendum of the r.h.s. of Eq. (3) is
retained. In Eq. (5) the absence of a term similar to the first
addendum in the r.h.s. of Eq. (3) is due to the fact that, when con-
sidering nearest and next nearest neighbour interactions, the two
superconducting layers S2 and S3 act as a single superconducting
system interacting with S1 and S4. In a TBJJ the intermediate layers
S2 and S3 do not allow, however, direct coupling between the outer-
most layers as it happens in a DBJJ so that the sin/ term disappears.
This argument is also supported by strict application of the
Feynman’s and Ohta’s semiclassical model to the four-layer system
[12]. Form the latter analysis we are able to extract the meaning of
the parameter e. In fact, we may define I1 ¼ 4e

�h ðK1
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2
p

þ~K1
ffiffiffiffiffiffiffiffiffiffiffiffi
N1N3
p

Þ
and I2 ¼ 4e

�h ðK3
ffiffiffiffiffiffiffiffiffiffiffiffi
N3N4
p

þ ~K2
ffiffiffiffiffiffiffiffiffiffiffiffi
N2N4
p

Þ, where the quantities Nk are the
number of superconducting electron pairs in the k-th electrode
and the constant in front of

ffiffiffiffiffiffiffiffiffiffiffi
NjNk

p
represents the coupling energy

between the electrodes j and k.
In the present work, by starting with the CPR in (5), we study

the I–V characteristics of triple-barrier Josephson junctions. We
first consider a homogeneous system (e = 0). and analytically
determine that, in this case, the I–V characteristics of TBJJs are
given by Eq. (2) in the presence of a constant current bias. For
inhomogeneous Josephson coupling (e – 0) numerical evaluation
of I–V characteristics are made; deviations of these curves from
the analytically determined characteristics for e = 0 are seen to be
compatible with the expression of maximum Josephson current
IMAX = (1 � e)I0. In the presence of a r. f. radiation integer and frac-
tional Shapiro steps arise in the I–V characteristics. Expressions of
the semi-amplitudes of these steps for e = 0 are determined by
means of a semi-analytic approach. Numerical evaluation of I–V
curves are performed.

2. I–V characteristics in the presence of a constant current bias

Let us consider the CPR of TBJJ given in Eq. (5). In the particular
case of e = 0, we obtain:

I ¼ I0 sin
/
2

sgn cos
/
2

� �
; ð6Þ

where

sgn cos
/
2

� �
¼

1 if cos /
2 > 0

�1 if cos u
2 < 0

(

Therefore, if we consider values of / in the interval [�p, p], we
notice that cos /

2 > 0, so that sgn cos /
2

� �
¼ 1. In this way, we have

I ¼ I0 sin
/
2

ð7Þ

for all values of / in [�p, p]. Adopting the Resistively Shunted
Josephson (RSJ) model we obtain the ordinary differential equation:

d/
ds
þ sin

/
2
¼ iB: ð8Þ

As in the case of a JJ, we can solve Eq. (8) by separation of variables,
so that:Z uðsÞ

/0

d/

iB � sin u
2

¼ s ð9Þ

where we take the integration interval [/0, /(s)] inside the interval
[�p, p] so that Eq. (7) holds. In order to solve the integral in the l.h.s.
of Eq. (9), we can make the substitution t ¼ tan u

4 to get:

Z /ðsÞ

/0

du
iB � sin u

2

¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
B � 1

q tan�1 iB tan u
4 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

i2
B � 1

q
0
B@

1
CA

2
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3
75

/ðsÞ

/0

: ð10Þ

By now setting tan�1 iB tan
/0
4 �1ffiffiffiffiffiffiffi

i2B�1
p

� �
¼ a0 and recalling that the integral

in the l.h.s. of (10) is equal to s, we have:

tan�1 iB tan /
4 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

i2
B � 1

q
0
B@

1
CA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
B � 1

q
4

sþ a0 ð11Þ

By applying the tangent function to both sides of Eq. (11) we obtain:

tan
/
4
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
B � 1

q
iB

tan a0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
B � 1

q
4

s

0
@

1
Aþ 1

iB
ð12Þ

Knowing that the tangent is a periodic function of period p, we may
write:

/ðsÞ ¼ 4 tan�1 1
iB

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
B � 1

q
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
B � 1

q
4

sþ a0

0
@

1
Aþ 1

2
4

3
5

8<
:

9=
;þ 4kp

ð13Þ

where k is an integer. The result of Eq. (13) is a crucial one in obtain-
ing the correct form of the I–V characteristics. In fact, while the
phase slip in JJs is of 2p, in TBJJs we notice that it doubles to 4p over
a pseudo-period T given by the period of the tangent function in
(13):

T ¼ 4pffiffiffiffiffiffiffiffiffiffiffiffiffi
i2
B � 1

q : ð14Þ

In this way, we can obtain an expression of the average voltage hvi
as follows:

hvi ¼ 1
T

Z T

0

d/
ds

ds ¼ 4p
T
: ð15Þ

Considering now Eqs. (14) and (15), we can get Eq. (2) and thus, the
I–V characteristics of TBJJs in the case e = 0. By this analysis we can
conclude that the I–V characteristics of homogeneous TBJJs are
equal to those of a JJ.

When we consider e – 0, we recur to numerical analysis, by first
integrating the non-linear ordinary differential equation

d/
ds þ

1� e2

2
sin /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ ð1� e2Þ cos2 /
2

q ¼ iB: ð16Þ

Numerical solutions for e = 0.15 and iB = 0.9, 1.1, 1.3, 1.5 of /(s)
and d/

ds as determined by Eq. (16) are represented in Fig. 1(a) and (b)
respectively.

Successively, we evaluate, for single values of iB, the average
voltage hvi, by means of the numerically determined function /
(s) and its derivative. In this way, in Fig. 2 we show a curve for
e = 0.15 along with the e = 0 curve given by Eq. (1). In the latter
figure we notice that the e = 0.15 curve lies below the e = 0 curve.
This feature can be understood by generalizing the zero voltage
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