Accepted Manuscript

Mean-field approach to unconventional superconductivity

William Sacks, Alain Mauger, Yves Noat

PII:	S0921-4534(14)00149-X
DOI:	http://dx.doi.org/10.1016/j.physc.2014.04.041
Reference:	PHYSC 1252650
To appear in:	Physica C

Received Date:6 March 2014Accepted Date:25 April 2014

ELSIMER		1554 0921-5834
PHYSICA PHYSICA	G Superconductivity and its applications	
Available online at www.solenceditect.com ScienceDirect	http://www.elsevier.com/locate/physc	

Please cite this article as: W. Sacks, A. Mauger, Y. Noat, Mean-field approach to unconventional superconductivity, *Physica C* (2014), doi: http://dx.doi.org/10.1016/j.physc.2014.04.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mean-field approach to unconventional superconductivity

William Sacks^a, Alain Mauger^a, Yves Noat^b

^aInstitut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités, UPMC Paris 6, UMR CNRS 7590, 4 place Jussieu, 75252 Paris Cedex 05, France ^bInstitut des Nanosciences de Paris, Sorbonne Universités, UPMC Paris 6, CNRS UMR 7588, 4 place Jussieu, 75252 Paris Cedex 05, France

Abstract

We propose a model that connects the quasiparticle spectral function of high- T_c superconductors to the condensation energy. Given the evidence for pair correlations above T_c , we consider a coarse-grain Hamiltonian of fluctuating pairs describing the incoherent pseudogap (PG) state, together with a novel pair-pair interaction term that restores long-range superconducting (SC) coherence below T_c . A mean-field solution then leads to a self-consistent gap equation containing the new pair-pair coupling. The corresponding spectral function A(k, E) reveals the characteristic peak-dip-hump features of cuprates, now observed on iron pnictides (LiFeAs). The continuous transition from SC to PG states is discussed.

Keywords: Unconventional superconductivity, Pseudogap, Spectral function, Inhomogeneity *PACS:* 74.72.h, 74.50.+r, 74.20.Mn, 74.20.Fg, 74.20.Pq, 74.40.-n

Download English Version:

https://daneshyari.com/en/article/8164361

Download Persian Version:

https://daneshyari.com/article/8164361

Daneshyari.com