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Abstract The Self-Organizing Map (SOM) has applications like dimension reduction, data cluster-

ing, image analysis, and many others. In conventional SOM, the weights of the winner and its

neighboring neurons are updated regardless of their distance from the input vector. In the proposed

SOM, the farthest and nearest neurons from among the 1-neighborhood of the winner neuron, and

also the winning frequency of each neuron are found out and taken into account while updating the

weight. This new SOM is applied to various input data sets and the learning performance is

evaluated using three standard measurements. It is confirmed that modified SOM obtained a far

better result and better effective mapping as compared to the conventional SOM, which reflects

the input data distribution.
ª 2014 Production and hosting by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University.

1. Introduction

The Self-Organizing Map (SOM) is an unsupervised learning
algorithm introduced by Kohonen [1]. In the area of artificial

neural networks, the SOM is an excellent data-exploring tool
as well [2]. It can project high-dimensional patterns onto a
low-dimensional topology map. The SOM map consists of a

one or two dimensional (2-D) grid of nodes. These nodes
are also called neurons. Each neuron’s weight vector has
the same dimension as the input vector. The SOM obtains

a statistical feature of the input data and is applied to a wide
field of data classification [3–6]. SOM is based on competitive

learning. In competitive learning [7], neuron activation is a
function of distance between neuron weight and input data.
An activated neuron learns the most and its weights are thus

modified. If a similar pattern is found again, then the same
neuron may be activated again. This means that a particular
neuron wins repeatedly. So this neuron would learn more. To

prevent this, conscience learning is a way, which had been
proposed by De Sieno [8]. Further, Rival penalized competi-
tive learning (RPCL) [9] and its variant Rival penalized con-
trolled competitive learning (RPCCL) [10–13] was also

proposed. SOM preserves the topology of input data by
assigning each datum to a neuron having the highest similar-
ity, and data with similar attributes are mapped into adjacent

neurons [14].
The remainder of this paper is organized as follows. In

Section 2, we explain the conventional SOM learning

algorithm. In Section 3, the proposed SOM learning algorithm
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is explained. In Section 4, we conduct the experiments to com-
pare the performance. In Section 5, we discuss the conclusion.

2. Self-Organizing Map (SOM)

The SOM consist of m neurons located at a regular low-dimen-
sional map, usually a 2-D map. These neurons [15] are con-

nected with their neighbors according to topological
connections. There are two common types of topologies rect-
angular and hexagonal [16,17] for SOM map. Each neuron

i has a d-dimensional weight vector w= ( (wi1, wi2,........, wid),
where i= 1, 2. . ...m, which has the same dimension as the input
space.

The conventional SOM learning algorithm can be explained
using the following steps:

(a) Initialize the weight vectors wi
0s of the m · n neurons.

(b) Randomly select an input vector x(t) and it is input to all
the neurons at the same time in parallel.

(c) Find the winner neuron c, i.e., BMU using the following

equation:

c ¼ arg min
16i6mn

fkwiðtÞ � xðtÞkg
� �

; ð1Þ

||.|| is the Euclidean distance measure. Where xðtÞ and wiðtÞ are
the input and weight vector of neuron i at iteration t
respectively.

(d) The weight vector of the neurons is updated using the
following equation:

wiðtþ 1Þ ¼ wiðtÞ þ hc;iðtÞ½xðtÞ � wiðtÞ�; ð2Þ

where hc;iðtÞ is a Gaussian neighborhood function [16] given
below:

hc;iðtÞ ¼ aðtÞ � exp � jjrc � rijj2

2r2ðtÞ

 !
; ð3Þ

where r is the coordinate position of the neuron on the map,

aðtÞ is the learning rate and rðtÞ is the width of neighborhood
radius. Both aðtÞ and rðtÞ decrease monotonically using the
following equation:

aðtÞ ¼ að0Þ aðTÞ
að0Þ

� �t=T

; ð4Þ

rðtÞ ¼ rð0Þ rðTÞ
rð0Þ

� �t=T

ð5Þ

where T is the training length.
(e) For all the input data, steps (b) to (d) are repeated.

3. Modified SOM

For each input data, the neurons at minimum and maximum
distance from among 1-neighborhood of the BMU are found

out as shown in Fig. 1. These are then named nearest and far-
thest neuron for that particular input. The proposed learning
algorithm of SOM can be summarized in the following steps:

(Step 1) All the weight vectors wi 2 M of m · n neurons are
initialized, where i = 1,2, . . . ,mn and M is a set of m * n

weight vectors. Then the winning frequency gi ¼ 0 is initial-
ized for all neurons and the connection value C(i,j) = 0 is

also initialized between each neuron.
(Step 2) An input vector x(t) is selected randomly and given
simultaneously to all the neurons.
(Step 3) The winner neuron c, i.e., BMU is found out using

Eq. (1). Then, the distance between input xðtÞ and weight
vector is found and the rank ranki is assigned to each neu-
ron, where i = 0,1, . . .mn. The rank ranki is taken to be 0

for the BMU, because of being nearest to the input vector.
The winning frequency gc of the winner neuron c is
increased by 1.

(Step 4) The farthest neuron and the nearest neuron are
found out from among the 1-neighborhood of BMU using
Euclidean equation.
(Step 5) The connection value between BMU and neuron i

is increased using the following equation:

Cðc;iÞ ¼ Cðc;iÞ þ 1; ð6Þ

where i = f or i e Sf.

Also, the relative winning frequency ki of the neuron i is cal-
culated using the following equation:

ki ¼ gi

XM

j¼1
gj

.
ð7Þ

(Step 6) Except for the nearest neuron, the weight vectors of

the winner neuron and its neighbors are updated using the
following equation:

wiðtþ 1Þ ¼ wiðtÞ þ hc;iðtÞ½xðtÞ � wiðtÞ�; ð8Þ

where the function hc;iðtÞ is the neighborhood function
described as follows:

hc;iðtÞ ¼ aðtÞ � ð1� kiÞ � exp �
cðc;iÞ
2r2ðtÞ

� �
; ð9Þ

cðc;iÞ ¼ ri þ jjrc � rijj2 þ Cðc;iÞ

� �
; ð10Þ

Both aðtÞ and rðtÞ decrease consistently with time using

Eqs. (4) and (5) respectively.
(Step 7) The weight vector of the nearest neuron is updated

using the following equation:

wqðtþ 1Þ ¼ wqðtÞ þ hc;qðtÞ½xðtÞ � wqðtÞ�; ð11Þ

Figure 1 Neighborhood on the rectangular grid. Suppose

C= 16, Nc1 ¼ f10; 15; 17; 22g. If f= 15, Sf ¼ f13; 14g. If f= 22,

Sf = {28, 34}.
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