Accepted Manuscript

Vortex-antivortex dynamics in superconductor-antiparallel magnetic dipoles bilayers

Cléssio L.S. Lima

PII: S0921-4534(14)00164-6

DOI: http://dx.doi.org/10.1016/j.physc.2014.05.002

Reference: PHYSC 1252658

To appear in: Physica C

Received Date: 27 December 2013 Revised Date: 17 April 2014 Accepted Date: 3 May 2014

Please cite this article as: C.L.S. Lima, Vortex-antivortex dynamics in superconductor-antiparallel magnetic dipoles bilayers, *Physica C* (2014), doi: http://dx.doi.org/10.1016/j.physc.2014.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Vortex-antivortex dynamics in superconductor-antiparallel magnetic dipoles bilayers

Cléssio L. S. Lima

Núcleo de Tecnologia, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, 55002-970. Caruaru-PE. Brazil

Abstract

Artificial Superconductor(S)/Ferromagnet(F) hybrid structures composed by a S film and textured F layer have attracted great interest in the last fifteen years. In the limit of high values of magnetic moments, the ferromagnetic layer filled with magnetic particles (dipoles, nanodiscs, microrings, bars, etc.) can induce spontaneous creation and stabilization of vortex-antivortex (v-av) pairs in the S layer. These v-av molecules interact strongly with external applied currents inducing their annihilation or movement. Despite numerous studies about this subject, only a few of them emphasize the microscopic nature of this phenomena. In this work, the intricate dynamics of v-av molecules birth-death events and how this process influences macroscopic quantities are investigated.

 $\label{eq:Keywords: Superconductor-ferromagnet hybrids, Vortex-antivortex pairs, Superconductivity$

1. Introduction

The study of superconducting materials, in particular nanoscale materials is, nowadays, performed in more advanced way than past decades. Instead of the manufacturing and then after getting system properties, the nanoscience allows currently build nanostructures with desired physical characters [1]. In type II superconductors, the nanostructuring using artificial pinning potentials allows us to obtain materials with optimized physical properties, such as critical current [2] and critical temperature[3].

Email address: clsl@df.ufpe.br (Cléssio L. S. Lima)

Download English Version:

https://daneshyari.com/en/article/8164594

Download Persian Version:

https://daneshyari.com/article/8164594

<u>Daneshyari.com</u>