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a b s t r a c t

Vortex dynamics on a Nb superconductor open microtube are studied theoretically taking into account
the impact of single and multiple pinning centers. These dynamics are described by two characteristic
times: the period of nucleation of vortices at one edge of the tube and the duration of motion of a vortex
along the tube. Simulation reveals that the both characteristic times change by a factor of up to two due
to the presence of pinning centers. Different regimes of vortex dynamics are effectively controlled by
varying positions of pinning centers at given values of the applied magnetic field, the tube radius and
the transport current orthogonal to the tube axis. An experimental detection of the tube curvature effects
on vortex dynamics stays feasible in the presence of pinning centers.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Phenomena connected with the behavior of Abrikosov vortices
in the presence of different kinds of defects (natural or artificial)
such as a ratchet effect, a matching field effect, change of the spec-
trum of core excitations of a vortex, Majorana states in the pinned
vortices have been extensively studied (see, for instance, Refs.
[1–4]). It is shown, for example, that the controlled insertion of
artificial pinning sites in type-II superconductors allows for manip-
ulating the motion of superconducting vortices in the presence of a
transport current [5,6]. Introduction of artificial micro- or nano-
holes (antidots) in superconducting films is based on the methods
of optical lithography and ion-beam etching [6–11]. Random, peri-
odic (triangular) or quasiperiodic (Penrose) arrays of antidots lead
to diverse vortex patterns in superconducting Nb films [12]. Sta-
tionary distribution of vortices as well as vortex dynamics have
been studied using different experimental techniques, such as
the magneto-optical scanning holographic electron microscopy
[13], the Hall sensor method [11] and the laser scanning micros-
copy [14]. Superconducting properties substantially depend on
the dimensionality of a sample [15]. Achievements in fabrication
[16–19] of rolled-up materials make it possible to fabricate cylin-
drical tubes of superconducting materials (e.g., Nb) of radius about

500 nm from a planar film of thickness about 50 nm. With the roll-
up technique, the quasi-2-dimensionality of the film is combined
with a curvature. As shown in Ref. [16], the vortex dynamics are
significantly determined by the curvature of the superconductor
at the nano- or microscale. The present work is aimed at a quanti-
tative analysis of the simultaneous effects of curvature and pinning
centers on vortex dynamics on an open superconductor microtube.

2. Model

We consider a Nb superconductor open tube [16] of radius R
and length L (Fig. 1a). There are two paraxial contacts on the edges
of the tube slit, which are presented in Fig. 1a by heavy red lines
along the tube. A transport current is applied through the contacts
and flows orthogonal to the axis along the surface (circular red
lines). Such contacts cause vortex dynamics in the paraxial direc-
tion unlike those in the direction orthogonal to the tube axis con-
sidered in Ref. [20]. The system is in a magnetic field perpendicular
to the axis. Our model is based on the time-dependent Ginzburg–
Landau (GL) equation [21] for the order parameter w in the dimen-
sionless form [22]

@w
@t
¼ ðr� iAÞ2wþ 2j2wð1� jwj2Þ; ð1Þ

where j is the GL parameter,r is the gradient operator. The normal
to the cylindrical surface component of the magnetic field, accord-
ing to Fig. 1a, is Bn = �B sin(u). The effective magnetic flux is
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U = 2RLB and the vector potential is taken in the Landau gauge:
A = Aex, A = �By. We neglect the magnetic field induced by super-
conducting currents because according to our calculations it is
one order of magnitude lower than the applied magnetic field. Since
our evaluation shows that in the tube under analysis the scalar po-
tential concentrates mainly in the region far away from the region
with moving vortices, its influence on the vortex dynamics can be
disregarded in the first approximation. Boundary conditions for
Eq. (1) are [16]:

ðr � iAÞwjn;boundary ¼ 0;

r� i Aþ j=jwj2
� �i

w
h ���

n;electrode
¼ 0;

ð2Þ

where j is the transport current density, i is the imaginary unit. In-
put data for the subsequent calculations are presented in Table 1
(data are taken from Refs. [16,22]) and Table 2 (U0 is the magnetic
flux quantum). In the external magnetic field and without a trans-
port current, a stationary distribution of the order parameter occurs
in the tube. The vortices are located on the opposite sides of the
tube [16]. When the transport current is switched on, the vortices
start to move under the Magnus force. A quasistationary regime is
established at some values of the transport current density and
the magnetic field. In this regime vortices nucleate periodically at
one of the edges of the tube, move in the paraxial direction and then
denucleate at the other edge of the tube. According to Fig. 1b,

vortices move to the left (to the right) on the top (bottom) side of
the tube with respect to the x-direction. A snapshot of the distribu-
tion of the order parameter is presented on Fig. 1b (see Ref. [16]).
Physical validation of the model and evaluation of the ‘‘longitudi-
nal’’ (parallel to the applied transport current direction) electric
field through the Hall voltage generated between the points in the
xy-plane on both sides on the slit as a detectable measure of the
vortex dynamics are provided in Ref. [16].

For our simulation of vortex dynamics, different characteristics
of pinning centers are reduced to size and strength (the measure of
the force acting on the vortex). It is known [23] that a pinning cen-
ter influences the vortex dynamics most effectively when its size is
about the coherence length n. If the pinning center is smaller than
n, the superconducting order parameter does not vary substantially
in the region of the pinning center [23]. Due to the 3D–2D pinning
crossover (a transition from the 3D thickness-independent pinning
to the 2D pinning), we suggest that for our structure the most
important pinning factors are the surface roughness and impuri-
ties. Temperature fluctuations do not influence the vortex state
strongly in low-Tc superconductors [24]. For the numerical study
of the 2D pinning, the collective pinning theory [25] was developed
using the molecular dynamics methods (see, for example, [26]). In
the framework of the GL approach, modeling of a pinning center
through a spatial variation of the GL parameter is advantageous
as it represents the attracting (repelling) action of pinning centers
on vortex motion. Following this idea, we model an attracting pin-
ning center by assuming the Gaussian spatial inhomogeneity of the
GL parameter:

jðrÞ ¼ jNb 1� N exp �ðr � r0Þ2=2r2
h in o

; ð3Þ

where jNb is the GL parameter of the Nb matrix in the dirty limit
[16]; r0 is the position of the pinning center on the tube; r is a
parameter characterizing the size of the pinning center; in our cal-
culation we take r = n. The phenomenological parameter N 2 [0,1]
defines the strength of the pinning center. For the selected param-
eters, a conspicuous effect of one pinning center is observed when
N = 1. We have numerically checked that all effects of the pinning
centers on the vortex dynamics described below are protected by
the geometry of the open tube and are qualitatively robust with re-
spect to different models of pinning centers. In order to optimize
the modeling of pinning centers, sample-specific experimental data
are needed.

3. Interaction of a vortex with a pinning center on a tube

To quantify the influence of pinning centers on the vortex
dynamics, we introduce, following Ref. [16], two characteristic
times: the duration of motion of the vortex along the tube Dt1

and the time interval between two successive nucleations of vorti-
ces at one edge Dt2. The latter is the period of nucleation of vortices
at one edge of the tube. Without pinning centers, the characteristic

Fig. 1. (a) Schematic view of an open tube. The electrodes are displayed by the heavy red lines. The [-axis is the longitudinal axis of the cylindrical coordinate system (q, /, x).
The angle / is counted from the positive direction of the y-axis, passing through the middle of the slit. B = Bez is the external magnetic field. (b) Distribution of the squared
amplitude of the order parameter |w|2. Vortices nucleate at the top half-cylinder at the right edge, move in the direction opposite to the x-axis and denucleate at the left edge.
The opposite dynamics occurs at the bottom half-cylinder [16]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 1
Physical and geometrical parameters used for simulation.

Notation Value

Penetration depth k 279 nm
Coherence length n 56 nm
GL parameter j = k/n 5
Fermi velocity mF 6 � 105 m/s
Thickness of the film (used only for the

free electron path calculation)
d 50 nm

Free electron path [30] l = 10/
(1 + 40
(nm)/d)

5.6 nm

Diffusion coefficient D = lmF/3 11.2 � 10�4 m2 s�1

Relative temperature T/Tc 0.95

Table 2
Definition of dimensionless units used for Eqs. (1) and (2).

Unit Value

Time 2k2/D 0.14 ns
Length

ffiffiffi
2
p

k 395 nm

Magnetic field U0/(4pk) 2.12 mT
Magnetic flux U0

Current density U0=ð8
ffiffiffi
2
p

p2k3Þ 8.57 � 109 A m�2
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