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a b s t r a c t

We investigate the superconducting instability of a two-dimensional repulsive Fermi gas with Rashba
spin–orbit coupling aR. Using renormalization group approach, we find the superconducting transition
temperature as a function of the dimensionless ratio H ¼ 1

2 ma2
R=EF where EF = 0 when the smaller Fermi

surface shrinks to a (Dirac) point. The general trend is that superconductivity is enhanced as H increases,
but in an intermediate regime H � 0.1, a dome-like behavior appears. At a very small value of H, the
angular momentum channel jz in which superconductivity occurs is quite high. With increasing H, jz

decreases with a step of 2 down to jz = 6, after which we find the sequence jz = 6, 4, 6, 2, the last value
of which continues to H ?1. In an extended range of H, the superconducting gap predominantly
resides on the large Fermi surface, while Josephson coupling induces a much smaller gap on the small
Fermi surface. Below the superconducting transition temperature, we apply mean field theory to derive
the self-consistent equations and find the condensation energies. The state with the lowest condensation
energy is an unconventional superconducting state which breaks time-reversal symmetry, and in which
singlet and triplet pairings are mixed. In general, these states are topologically nontrivial, and the Chern
number of the state with total angular momentum jz is C = 2jz.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Unconventional superconductivity arising from purely repul-
sive fermion interactions was first studied by Kohn and Luttinger
[1]. Although the bare interaction is repulsive, screening effects
can give rise to attraction between fermions. In three dimensions,
p-wave superconductivity is found at second order in the interac-
tion [1], while for a strictly parabolic dispersion in two dimensions
(2D), it is known that repulsive interaction does not induce super-
conductivity to second order in the interaction, and one has to go
to third order for the occurrence of superconductivity [2]. Since
spin–orbit coupling plays an important role in many condensed
matter systems, such as topological insulators, noncentrosymmet-
ric systems, and some oxide interfaces, it is natural to ask: what is
the role of spin–orbit coupling in this process? Does it enhance
superconductivity? And what is the nature of the superconducting
state? In this paper, we investigate the unconventional supercon-
ductivity in two-dimensional (2D) repulsive Fermi gas with Rashba
spin–orbit coupling. (The superconductivity of Rashba model with
attractive interaction has been addressed in Ref. [3–5].)

In an earlier paper [6], we have reported some main results of
this work. In this paper, we include the details of the calculations.

In addition, we clarify the pairing symmetry and topological prop-
erties of the unconventional superconducting states we found.

In Rashba model, the strength of the spin–orbit coupling is
characterized by the parameter aR, which is tunable by the applica-
tion of an external electric field perpendicular to the 2D system.
We treat the Rashba spin–orbit coupling aR nonperturbatively, so
we can analyze the relative values of the mean-field transition
temperature Tc for an arbitrary value of the dimensionless ratio
H ¼ 1

2 ma2
R=EF , where m is the (bare) fermion mass and EF is the Fer-

mi energy, measured from the Dirac point. In the strictest sense, in
2D Kosterlitz-Thouless theory should be used to treat the phase
transition, and the transition temperature TKT < Tc. However, since
we are working in the weak coupling limit, the pairing energy scale
is much smaller than the zero temperature phase stiffness energy
and 1 � TKT/Tc � Tc/EF� 1, justifying the approach presented here.

Our study is formulated within the renormalization group (RG)
approach [7]. We integrate out high energy modes, and derive
effective interactions for low energy modes. We perturbatively cal-
culate the renormalization of the interactions, and derive the RG
flow equations which describe how the interactions evolve with
lowering the energy. The effective interactions, as well as the RG
equations, can be decoupled in angular momentum channels.
Although singlet and triplet pairs are mixed by spin–orbit coupling
[4], since the Hamiltonian commutes with the z-component of the
total angular momentum, Jz = Lz + Sz, we can label the pair states
according to jz, the eigenvalue of Jz. The decoupled effective inter-
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actions in each channel follow the same RG equation, but have dif-
ferent initial values. In some channels, they diverge at some energy
scale as the RG flow runs. Among all the channels, the highest en-
ergy scale at which the divergence occurs is identified with the
superconducting transition temperature.

The Fermi surface splits into two due to spin–orbit coupling, a
large one and a small one, with helicity k = +1 and �1, respectively.
We find that the superconducting gap residing on the large Fermi
surface always dominates, while momentum space Josephson cou-
pling induces superconductivity on the small Fermi surface. The
superconductivity is enhanced by spin–orbit coupling, since now
it appears at second order of the repulsive interaction instead of
third order. With H increasing from small values to infinity, the
angular momentum channel jz in which Cooper pairs condense de-
creases as a arithmetic sequence with step 2, with an exception in
the intermediate range of H (see Fig. 6). In the limit of large H, we
find jz = 2. Our results can also be derived diagrammatically by
summing the leading logarithms to all orders in perturbation the-
ory, as has been done traditionally in treating Kohn-Luttinger effect
[8,9]. Also, our approach is similar to that of Ref. [10] (see also
[11]), which implements a two-step RG by first eliminating high
energy modes down to an artificial cutoff and then running the
RG flow from the cutoff. However, our single step RG is more
economical.

In the superconducting state, mean field theory is applied to
find the self-consistent equations and the condensation energies.
There are two solutions to the self-consistent equations, one
fully gaps the Fermi surfaces and breaks time reversal symmetry
(TRS), and the other has gap nodes and does not break TRS. The
former has a lower condensation energy, hence is the physical
state. In this state, only one of the two ±jz pairing components
is finite, and singlet and triplet pairings are mixed. For example,
jz = 2 state is a mixture of dx2�y2 þ idxy singlets, px + ipy spin-up
triplets and fx3�3xy2 þ if3x2y�y3 spin-down triplets. These TRS
breaking states are topologically nontrivial, with the Chern num-
ber C = 2jz.

It is convenient to define a three-component vector ~Dk in such a
way that the gap function on helicity-k Fermi surface is
ð~Dk � ~RÞðiryÞ, where ~R ¼ ðrx;ry; 1Þ. For a general noncentrosym-
metric superconductor, the gap function is usually defined as
ðw1þ~d � ~rÞðiryÞ where w is the order parameter for spin-singlet
pairing while ~d is that for spin-triplet pairing. In our case, the z-
component of the ~d-vector is zero since all the triplets are polar-
ized. So we combine the x- and y-component of ~d with w to form
the new vector ~Dk. In this way the gap function can be represented
by ~Dk, which can be viewed graphically. We find

~Dk ¼ Dkikeijzhk ðsin hk;� cos hk;�kÞ; ð1Þ

where Dk is the pairing amplitude on the helicity-k Fermi surface.
We plot ~D� (without the phase factor) around the two gapped
Fermi surfaces schematically in Fig. 1.

This paper is organized as follows. In Section 2, we set up the
Hamiltonian and solve the eigenenergies and eigenstates for the
noninteracting Hamiltonian. In Section 3, we formulate the problem
using path integrals, and perturbatively expand the action to second
order. Two diagrams, the particle–particle bubble and particle-hole
bubble, contribute to the renormalization of the interaction. In Sec-
tion 4, we explicitly calculate the particle-hole bubble, which will
show up in our final expression for the superconducting transition
temperature. In Section 5, the higher order expansion is calculated,
to serve as the RG flow. In Section 6, RG approach is applied, and the
decoupled flow equations are found and solved in each angular
momentum channel. In Section 7, the effective couplings and super-
conducting transition temperature Tc are computed. The symmetry
and topological properties of the unconventional superconducting

states are illustrated in Section 8. We summarize the paper in Sec-
tion 9. The mean field theory below Tc, including the Ginzburg–Lan-
dau theory, is derived in Appendix A.

2. Hamiltonian

We start from the single particle Hamiltonian of a two-dimen-
sional Fermi gas with spin–orbit coupling,

H ¼ H0 þ HSO þ Hint ; ð2Þ

where the free electron term is

H0 ¼
k2

2m
; ð3Þ

the spin–orbit coupling term is

HSO ¼ aRðr� kÞ � n̂ ¼ aRðrxky � rykxÞ ¼ aRk
0 ie�ihk

�ieihk 0

 !
;

ð4Þ

where r’s are Pauli matrices, and the interacting term Hint is dealt
with later. Here hk is the angle between k and kx-axis. The eigenen-
ergies of the noninteracting Hamiltonian are

�kk ¼
k2

2m
� kaRk ¼ ðk� kkRÞ2

2m
� k2

R

2m
; ð5Þ

and the corresponding eigenstates are

gkk ¼
1ffiffiffi
2
p

1
ikeihk

� �
; ð6Þ

where kR = maR, k = ±1 and kk = kF + k kR with

kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF þ k2

R

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð0Þ2F þ k2

R

q
. The Fermi surface is split into two

Fermi surfaces by spin–orbit coupling, with different helicities. In
second quantization form,

H0 ¼
X

kk

k2

2m
cykkckk; ð7Þ

HSO ¼ aR

X
kab

cyka½ðrab � kÞ � n̂�ckb; ð8Þ

where cykk and ckk creates and annihilates fermions with spin k = " or
; and momentum k, respectively. Diagonalized in the helicity basis,
the kinetic Hamiltonian becomes

Fig. 1. A schematic plot of ~Dk (without the phase factor) around the two gapped
Fermi surfaces.
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