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a b s t r a c t

A possible origin of the high-temperature superconductivity in cuprates has been suggested. It is sup-
posed that electron–phonon interaction determines the strong correlation narrowing of the electron
band. It provides the conditions for the formation of a singlet electron pair coupled by exchange interac-
tion. For the pure t-J model it has been proved that these electron pairs are destroyed by a strong effective
kinematic field. The detailed analysis of an influence of the Holstein polaron excitations upon normal and
superconducting properties of the strongly correlated electrons was made. A calculated critical temper-
ature of the superconductivity and gap function are in good agreement with experimental data for
cuprates.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the 21st century a phenomenon of the high-temperature
superconductivity in cuprates continues to attract the attention
of many researches [1]. There are a tremendous number of sug-
gested mechanisms of this phenomenon. In any case there is not
a such theory which would describe all properties of this compli-
cated state. In this work we have centered on the main peculiarity
which in our opinion might help to illuminate the origin of high-TSC

in cuprates. The electron–phonon coupling is supposed to be not
essential in the Cooper electron pairings. But this interaction forms
the polaron excitations which play an important role in the corre-
lation narrowing of the electron band. In that case it is necessary to
differentiate the collectivized electrons in metals and ones in
doped cuprates. Indeed, in metals there is wave electron states
with a possibility of the site double occupancy. But their hole states
is virtual. And that’s why we have the partition function
expðekr=TÞ þ expðek�r=TÞ for electron excitations ek�r. In cuprates
a coordinate representation is realized for electron wave functions
and we have the partition function 1þ expðer=TÞ þ expðe�r=TÞ
with electron levels e�r and hole state.

The cuprates belong to class of the strongly correlated electron
system. In work [2] an effective Hamiltonian of the t-J model was
suggested based on the use of Gutzwiller projection operator. It al-
lowed to exclude the upper Hubbard band with double site occu-
pancy by electrons and essentially to simplify an investigation of
the strongly correlated electron systems. In work [3] a mean field
approximation of the t-J model was developed to study the

high-temperature superconductivity. In this work a fundamental
idea about spin pairing via electron exchange interaction was for-
mulated. Unfortunately, authors were not taken into account the
essential difference between metal and strongly correlated elec-
trons. Using Bogolyubov’s u–v transform of the Hamiltonian they
obtained the equation for gap function to be similar in BCS theory.

In this work we propose to divide the mean field BCS type Ham-
iltonian into uniform and nonuniform parts. The perturbation the-
ory was built with uniform unperturbed Hamiltonian. The
nonuniform part is neglected since it has a weak influence on the
hopping integral. A hopping term of the total t-J Hamiltonian is
considered as perturbation in the limit of a weak doping with u–
v transformed creation and destruction operators. The abnormal
mean values to be proportional the superconductive gap function
were calculated. It has been obtained the condition on values of
the chemical potential and exchange parameter. With account of
the correlation band narrowing we make the conclusion about
impossibility of HTSC in the pure t-J model.

In what follow we include into consideration the electron–pho-
non interaction. The evidences for a presence of one and its impor-
tant role in the strongly correlated systems were emphazised in
works [4–6]. In view of the fact that Hamiltonian of electron–pho-
non coupling is nonuniform many authors simplify the kinematic
part by simple renormalization of the hopping integral [6] or use
the theory of Eliashberg for collectivized metal electrons [4]. In for-
mer case it gives rise to drastic suppression of the electron band
and is responsible for the absence of HTSC in a system without
interaction of polarons. The simplest form of the Holstein Hamilto-
nian for polarons needs to be considered with uniform electron–
phonon interaction and Einstein phonon mode. One can provide
the exact unitary transform to separate fermion and boson degree

0921-4534/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physc.2013.11.005

⇑ Tel.: +380 623429624.
E-mail address: zubov@fti.dn.ua

Physica C 497 (2014) 67–76

Contents lists available at ScienceDirect

Physica C

journal homepage: www.elsevier .com/locate /physc

http://crossmark.crossref.org/dialog/?doi=10.1016/j.physc.2013.11.005&domain=pdf
http://dx.doi.org/10.1016/j.physc.2013.11.005
mailto:zubov@fti.dn.ua
http://dx.doi.org/10.1016/j.physc.2013.11.005
http://www.sciencedirect.com/science/journal/09214534
http://www.elsevier.com/locate/physc


of freedom. It allows to build the subsequent perturbation theory
of the strongly correlated electron system with Holstein’s polarons.

The structure of the paper is as follows. In Section 2 we consider
the Hamiltonian of pure t-J model in the superconducting state. It
was separated the uniform mean field part with corresponding
coefficients of u–v transform. It enables us in Section 3 to build
the perturbation theory for strongly correlated electrons in the
superconducting state. In particular, it was obtained the trans-
formed Hubbard operators in coordinate representation using the
Bogolyubov’s u–v transform. As a result, the equation for gap func-
tion and conditions for the existence of the superconducting state
were presented. In Section 4 the properties of normal state without
electron–phonon coupling are considered. In the framework of the
developed diagrammatic method it was shown the absence of
superconductivity in a pure t-J model. In Section 5 a normal state
of the cuprate d-electrons with polaron excitations is investigated
to find the critical temperature of superconducting state. In this
section it has been solved the problem of a frequency summation
with infinity number of poles as implicit functions. The suggested
method of an inverse function allowed to calculate the diagram-
matic contributions for all polaron bands. In Section 5 the obtained
equations are solved numerically that allowed to find the concen-
tration dependencies of the critical temperature TSC and gap func-
tion D versus temperature. The theoretical values of TSC and D are
in good agreement with experiment that supports the model to
put forward by us.

2. Hamiltonian of the system

The Hamiltonian of the Holstein model with strongly correlated
electrons takes the form:bH ¼ bHf þ bHb; ð1Þ

where the Fermi part, bHf , is expressed as follows:

bHf ¼
X

i;j

Jij SiSj �
1
4

ninj

� �
� l

X
ir

nir þ bV ; ð2Þ

Here, Jij is the indirect exchange of the collectivized d-electrons
with spins Si and Sj;ni ¼ nir þ ni�r is the electron concentration on
i-site, l is the chemical potential. The perturbation bV is written asbV ¼X

i;j;r

tijcþricrjð1� ni�rÞð1� nj�rÞ; ð3Þ

where cþri (crj) creates (annihilates) an electron with spin r on lat-
tice site i, respectively, and tij is the hopping integral to be equal
to t for nearest neighbors. The Hamiltonian (2) of t-J model reflects
the strong electron correlations. In a weak doping level we will con-
sider the part (3) as a perturbation.

The boson part of Hamiltonian (1) has a form similar to that
used in the Holstein model of a small polaron:bHb ¼ �g

X
i

niðbþi þ biÞ þx0

X
i

bþi bi; ð4Þ

where g is the electron–phonon coupling strength, bþi and bi are the
phonon creation and destruction operators, respectively. We will
use the Einstein model where the phonon frequency x0 is assumed
to be dispersion-free.

The Lang–Firsov unitary transform [7] eU ¼ exp eS� �
of Hamilto-

nian (4) allows to separate the boson and fermion operators in (4),
where eS ¼ � g

x0

P
iniðbþi � biÞ. As a result we havebeH b ¼ eU�1 bHb

eU ¼ x0

X
i

bþi bi � n
X

i

ni; ð5Þ

where n ¼ g2=x0 is the polaron binding energy. The unitary trans-
formed perturbation bV is presented as

bV ¼X
hiji;r

tij~cþir~cjrð1� ni�rÞð1� nj�rÞ: ð6Þ

Here, the unitary transformed Fermi operators

~cir ¼ Yicir; ð7Þ

are product of Bose Yi ¼ ekðbþi �biÞ and corresponding Fermi destruc-
tion operators, where k ¼ g=x0. It is necessary to point out that first
and second terms of the Hamiltonian (2) are not changed under
transform eU .

One can separate in a Heisenberg part of the Hamiltonian (2) by
standard manner a mean field to be connected with anomalous
averages [3]. Then an unperturbed Hamiltonian takes the form

bH0f ¼
X
hijir

Dijrcþircþj�r þ D�ijrci�rcjr

n o
�
X

ir

~lrnir; ð8Þ

where ~lr ¼ ~l� rJð0ÞhSzi; ~l ¼ lþ n; hSzi is a mean electron spin and
r ¼ �1. The gap functions are expressed via exchange parameters:

Dijr ¼ �Jijhci�rcjri;

D�ijr ¼ �Jijhcþircþj�ri:
ð9Þ

In a wave space the Hamiltonian (8) takes the form

bH0f ¼
X
kr

fDkrcþkrcþ�k�r þ D�krc�k�rckrg �
X
kr

~lrnkr; ð10Þ

where the gap functions Dkr can be presented as

Dkr ¼ �
1
N

X
q

Jðqþ kÞhc�q�rcqri; ð11Þ

and D�kr is conjugate function Dkr . One can point out that in Eqs. (9)
and (11) the operators of creation and destruction are not trans-
formed by operator Y i from (7). The Bogolyubov’s u–v transform

ckr ¼ u�krakr þ vkraþ�k�r;

cþkr ¼ ukraþkr þ v�kra�k�r;
ð12Þ

to new operators akr and aþ�k�r allows to diagonalize bH0f with the
next conditions

ukr ¼ u�k�r; vkr ¼ �v�k�r; ukrj j2 þ vkrj j2 ¼ 1: ð13Þ

Then we have

bH0f ¼
X
kr

eEkraþkrakr; ð14Þ

where

eEkr ¼ �~l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dk

~l

� �2
s

: ð15Þ

In what follows we will consider a paramagnetic state when
hSzi ¼ 0. Then one can put

~lr ¼ ~l; Dkrj j ¼ D�k�rj j ¼ Dk: ð16Þ

So far it has been obtained that the BCS Hamiltonian (14) coin-
cides with similar Hamiltonian of Baskaran–Zou–Anderson [3].
Unfortunately, the authors of work [3] do not separate perturba-
tion bV from (1). Instead of this they narrow band multiplying the
hopping integral t by factor x to be equal to hole concentration.
It does not allow to find the rigorous statement relatively an
appearance of the superconductivity since the band energy at
x � 0 has finite quantity. That’s why we will expand Eq. (14) in
terms of the small parameter up to third order:

eEk ¼ �~l 1þ 1
2

D2
k

~l2 �
1
8

D4
k

~l4 þ
3

48
D6

k
~l6 � � � �

( )
: ð17Þ
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