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a b s t r a c t

We argue that the intrinsic magnetic moments of the Cooper pairs can be detected in experiments with
superconducting thin-film rings. At sufficiently low temperatures the magnetic field generated by the
supercurrent, can cause the ordering of these magnetic moments. This magnetization of the supercon-
ductor produces changes in the supercurrent and magnetic induction distributions, the heat capacity
and magnetic moment of the ring. It is shown how the intrinsic magnetic moment of the Cooper pairs
can be extracted from low-temperature behaviors of these measurable quantities of the current-carrying
rings made of the cuprate superconductors. Experimental determination of the magnetic moment of the
Cooper pairs can shed light on the pairing symmetry in the HTC cuprates.

� 2013 Published by Elsevier B.V.

1. Introduction

The pairing symmetry in the cuprate superconductors is still con-
troversial topic [1,2]. From the theoretical point of view, the d-wave
pairing is mostly argued [3], though another spin-singlet channels,
such as the s-wave pairing and admixed dx2�y2 þ s pair state are also
discussed [1,2,4,5]. As noted in [6], the central symmetry of the CuO2

planes can be broken down because of asymmetric surroundings of
these planes in the parent compounds, as occurs in YBa2Cu3O7�d.
Also, doping-induced disorder can lead to the absence of this sym-
metry in the doped cuprates [7]. As a result, the mixed singlet–triplet
state in the cuprates may be, in principle, possible [7–9].

High hopes to solve the problem of pairing symmetry are en-
trusted to the bulk- and phase-sensitive experimental techniques
based on the macroscopic quantum coherent effects in supercon-
ductors. Though the dx2�y2 pair state have been actively sought in
numerous studies [1,2,10,11], a variety of experimental tests
yielded conflicting results [12–16]. Therefore, another way for
determining this symmetry is seemed to be urgent.

Here we focus on the well-known aspect that the pairing sym-
metry in superconductors and the intrinsic magnetic moment of
the Cooper pairs are interrelated. So, for the s-wave pairing pre-
dicted by the Bardeen–Cooper–Schrieffer theory, the relative orbi-
tal angular momentum of the electron pairs is l = 0, and their
orbital and spin magnetic moments are equal to zero. The most
common opinion is that the cuprates inherent singlet d-wave pair-
ing. This means that the orbital angular momentum of the electron
pairs l = 2, and, respectively, the pairs have the orbital magnetic

moment. For the mixed singlet–triplet state, besides the intrinsic
orbital magnetic moment, the Cooper pairs have the spin magnetic
moment as well.

Thus, the experimental determination of the magnetic moment
of the Cooper pairs in superconductors and, in particular, the cup-
rates can shed light on the pairing symmetry. In addition, it is
important to establish whether this symmetry is the same in dif-
ferent regions of the phase diagram of doped cuprates. For this pur-
pose it is necessary to find experimental conditions in which the
magnetic moments of the Cooper pairs will manifest themselves
in observables.

In this paper we show that the magnetic moments of the Cooper
pairs can be determined in experiments with thin-film rings made
of the cuprate superconductors. The magnetic field generated by
the persistent supercurrent in the ring, penetrates into the super-
conductor, if the ring thickness is less than the London penetration
depth. In the case of sufficiently low temperatures this magnetic
field causes the ordering of the magnetic moments of the Cooper
pairs that leads to the local magnetization of the superconductor.
This paramagnetic response produces changes in low-temperature
properties of the ring such as the supercurrent and magnetic field
distributions, the heat capacity and magnetic moment of the
superconducting ring. The main result of our study is that from
experimental measurements of the low temperature dependences
of these observables one can determine the magnetic moment of
the Cooper pairs.

2. Superconducting ring

Consider a flat thin-film ring made of the cuprate superconduc-
tor, with the inner radius a, the outer radius b and the ring thick-
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ness d. In the cylindrical coordinates used below, the z-axis coin-
cides with the crystallographic c-axis, and the ring occupies the re-
gion a 6 q 6 b and � d/2 6 z 6 d/2. In this geometry the currents
flow in the CuO2 planes, and the current and magnetic field distri-
butions in the ring are determined by the penetration depth kab.

It is assumed that the magnetic field generated by the supercur-
rent in the ring, is less than the first critical field for the supercon-
ductor. This imposes a limit on the number of fluxoids trapped into
the ring.

Calculations are carried out for the rings with a� kab,
b � a� kab and d < kab. The latter allows to neglect the z-depen-
dence of the current density and magnetic field into the supercon-
ducting film. Because of the circular symmetry, the current density
and vector-potential have only a u-component, j(q) = j(q)iu and
A(q) = A(q)iu, where iu is the azimuthal unit vector. The magnetic
induction in the film and ring hole has only a z-component,
B(r) = B(q)iz.

In the case of the d-wave symmetry, the Cooper pair has the
intrinsic orbital magnetic moment li. Its z-projection is

lz ¼ lCmL; ð1Þ

where lC is the order of the Bohr magneton and mL = 0, ±1, ±2.
For the isotropic pairing the Cooper pair has no intrinsic mag-

netic moment.

3. Closed system of equations

As is well known, the cuprates exhibit coherent lengths in the
nanometer range. The magnetic field in the ring does not change
on such lengths. Hence, for description of the Zeeman energy of
the Cooper pairs and their interaction between each other we
can use their center-of-mass radius-vectors. The density matrix
can be presented as:

q ¼ e�ðWZþWdÞ=kT=Spðe�ðWZþWdÞ=kTÞ; ð2Þ

where T is the ring temperature, WZ is the Zeeman energy,

WZ ¼ �
X

i

liBðriÞ; ð3Þ

and Wd is the energy of the magnetic dipole interaction of the Coo-
per pairs,

Wd ¼
l0

2

X
i–j

lilj

jri � rjj3
�

3ðliðri � rjÞÞðljðri � rjÞÞ
jri � rjj5

" #
: ð4Þ

Here ri is the center-of-mass radius-vector of i-electron pair.
Using (2)–(4), methods were developed to calculate the average

A ¼ SpðqbAÞ of an operator A in form of a power series in T�1 (see
[17] and references therein). However, with respect to our prob-
lem, for not too low temperatures the energy (4) can be neglected
as compared to (3). Evaluation of these temperatures is carried out
in Section 4. Considering that in a real situation T(<Tc)� lC-

B(q = a)/k, from (1)–(3) we obtain the average magnetic moment
of the Cooper pair:

lzðriÞ ¼ Spðql̂zÞ ¼
2l2

CBðriÞ
kT

: ð5Þ

This ordering of the magnetic moments of Cooper pairs leads to the
magnetization vector J(q) = Jz(q)iz in the ring. Using (5), we obtain:

Jz ¼
2l2

CnCBðqÞ
kT

; ð6Þ

where nC is the density of Cooper pairs.
From (6) we find the relationship between the magnetic induc-

tion and magnetic field strength:

B ¼ l0
T

T � T0
H; ð7Þ

where T > T0, and T0 is the characteristic temperature, which de-
pends on the intrinsic magnetic moment of the Cooper pairs:

T0 ¼
2l0l2

CnC

k
: ð8Þ

In the derivation of the characteristic temperature (8) we ne-
glected the energy of the magnetic dipole interaction of the Cooper
pairs, which is proportional to (T0/T)2, as shown in Section 4. At
T � T0, this energy is the same order of magnitude as the Zeeman
energy for all the Cooper pairs. Therefore, further we assume that
the ring temperature T� T0.

Now let us estimate T0. For lC = lB and the density of the Cooper
pairs nC = 1020 cm�3 we obtain T0 = 1.6 mK. Of course, this charac-
teristic temperature is too low compared with the superconducting
transition temperature of the cuprates. Therefore there is a region
of the ring temperature T0� T� Tc in which all properties of the
superconductor such as the penetration depth and density of the
Cooper pairs, can be considered as constant.

From the Maxwell equation rotH = j and (7), we obtain:

rotB ¼ l0
T

T � T0
j: ð9Þ

Introducing B = rotAj, where Aj is the vector potential generated by
the supercurrent, from (9) we have:

AjðrÞ ¼
l0T

4pðT � T0Þ

Z
jðr1Þ
jr� r1j

dr1: ð10Þ

Relationship between the current density and total vector po-
tential in the ring is given by the London equation:

j ¼ U0n

2pl0k
2
abq

iu �
1

l0k
2
ab

ðAj þ ALÞ; ð11Þ

where U0 ¼ p�h=e is the fluxoid, n is the number of fluxoids trapped
into the ring.

Unlike the vector-potential Aj generated by the Cooper pairs at
their regular circular motion in the supercurrent states, the vector-
potential AL(r) is created by the intrinsic magnetic moments of the
Cooper pairs. The vector potential at the point r generated by the
magnetic moment of the i-Cooper pair, is:

bAiðrÞ ¼
l0

4p
½l̂i; r� ri�
jr� rij3

; ð12Þ

where l̂i is the operator of the magnetic moment of the pair. The
total vector potential is AL ¼

P
iAiðrÞ, where the summation is taken

over all the Cooper pairs. Using (2), (3) and (12), we find the average
value of the total vector potential:

AL ¼ ALðqÞiu ¼
1

4p
T0

T

Z ½Bðr1Þ; r� r1�
jr� r1j3

dr1; ð13Þ

where the integration is carried out over the ring volume.
Thus, we have the closed system of two equations. Considering

(10), (11) and (13), the first equation is:

jðr; TÞ ¼ U0n

2pl0k
2
abq

iu �
T

4pk2
abðT � T0Þ

Z
jðr1Þ
jr� r1j

dr1

� 1
4pl0k

2
ab

T0

T

Z ½Bðr1Þ; r� r1�
jr� r1j3

dr1; ð14Þ

and the second one is given by:

Bðr; TÞ ¼ l0T
4pðT � T0Þ

Z ½jðr1Þ; r� r1�
jr� r1j3

dr1: ð15Þ
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